
A Prolog Garbage Collector for Aquarius

Herve Touati
Computer Science Division

EECS.
University of California

Berkeley, CA 94720

August 15, 1988

Abstract
This report presents the design and evaluation of the garbage collector we designed for the

Aquarius project. Our design is the result of an attempt to incorporate into Prolog implementa
tions the ideas which made generation scavenging successful for Lisp and Smalltalk. The main
challenge was to take advantage of generation scavenging without giving away the basic Prolog
technique of memory recovery upon backtracking based on stack deallocation. We were able
to do so with little extra overhead at run-time. Our main strategy consists in restricting the
action of the garbage collector to a fixed amount of memory allocated at the top of the global
stack. This strategy has several advantages: it improves the locality of the executing program
by keeping the data structures compacted and by allocating new objects in a fixed part of the
address space; it improves the locality and the predictability of the garbage collection, which can
concentrate its efforts on the fixed size area where new objects are allocated; and it allows us to
use simpler, time-efficient garbage collection algorithms. The performance of the algorithm is
further enhanced by the use of copying algorithms whenever made possible by the deterministic
nature of the executing program.

1 Introduction

This report presents the design of the Aquarius Prolog garbage collector. The fundamental goal of

the Aquarius project is to establish the principles by which very large improvements in performance

can be achieved in machines specialized for calculating difficult problems in design automation,

expert systems, and signal processing. It is currently focusing on an eJ-..-perimental multiprocessor

architecture for the high performance execution of Prolog.

Our goal was to design a fast garbage collector for Aquarius which does not have the following

problems associated with existing algorithms for Prolog: poor locality and thus poor virtual memory

performance, excessive complexity of the design, reduction in addressing capability due to the need

for garbage collection bits.

To achieve higli performance and good locality, we adapted to Prolog the principles of generation

based garbage collection which were developed for Lisp and Smalltalk [LH83,Moo84,Ung87,Sha87].

These techniques are based on the fact that most garbage cells are to be found among newly

created objects. A garbage collector that concentrates its efforts on newly allocated objects can

have high locality, low cpu requirements, while recovering most of the unused space.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 AUG 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
A Prolog Garbage Collector for Aquarius

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report presents the design and evaluation of the garbage collector we designed for the Aquarius
project. Our design is the result of an attempt to incorporate into Prolog implementations the ideas which
made generation scavenging successful for Lisp and Smalltalk. The main challenge was to take advantage
of generation scavenging without giving away the basic Prolog technique of memory recovery upon
backtracking based on stack deallocation. We were able to do so with little extra overhead at run-time.
Our main strategy consists in restricting the action of the garbage collector to a fixed amount of memory
allocated at the top of the global stack. This strategy has several advantages: it improves the locality of the
executing program by keeping the data structures compacted and by allocating new objects in a fixed part
of the address space; it improves the locality and the predictability of the garbage collection, which can
concentrate its efforts on the fixed size area where new objects are allocated; and it allows us to use
simpler, time-efficient garbage collection algorithms. The performance of the algorithm is further
enhanced by the use of copying algorithms whenever made possible by the deterministic nature of the
executing program.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

54

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Our garbage collector is based on several of these techniques. In our scheme, as in generation

scavenging [Ung87], new objects are allocated on an area of a fixed size, in a fixed memory location,

and the garbage collector is called when this area is filled up with new objects. We support only two

generations, old and new, and we only garbage collect the objects once. We argue, in section 2.2

that this simple strategy is the most suitable in the case of Prolog. Our algorithm is described in

more detail in section 3

Another_ factor which contributes to the speed of advanced Lisp and Small talk garbage collectors

is the use of algorithms based on copying, as opposed to the slower marking and compacting

technique. The main drawback of copying algorithms is that they do not conserve the order of

creation of objects, while marking and compacting algorithms do. This makes the use of copying

algorithms difficult in Prolog, since global objects are usually created on a global stack, to allow

fast memory recovery when backtracking.

Using heap allocation of data structures in Prolog would allow the use of fast copying algorithms

for garbage collection. Unfortunately, it would make the recovery of storage on backtracking much

slower, and the implementation not significantly simpler. To get the best of both worlds, we

suggest instead to keep the stack allocation of global objects and to make use of copying algorithms

to garbage collect deterministic computations. We describe in section 4 how we were able to obtain

significant speedups that way.

In section 5, we discuss what kind of hardware and operating support could be used to speed up

our algorithms. In section 6, we introduce some other issues relevant to Prolog garbage collection:

among them, a an assessment of virtual backtracking. Finally, in section 7, we review previous

work on Prolog garbage collection and compare it with our scheme.

2 Prolog Specifics

In the next subsection, we give a short introduction to the Warren Abstract Machine (WAM)

[War83]. This subsection can be skipped by the reader if he or she is familiar with the WAM. In

the following subsections, we discuss in more detail those features of the WAM which have a strong

influence of the design of the garbage collector.

2.1 Basic Notions on the WAM

2.1.1 Memory Layout

The WAM subdivides the memory into four areas: the environment stack, the choice point stack,

the global stack and the trail stack. The environment stack and the choice point stack may or may

not l)e interleaved, depending on the exact details of the implementation.

Environments and choice points are described below. The global stack contains all the objects

created during the execution of the program which either survive the procedure instantiation which

created them, or are of a complex type (list or structure). It plays a role similar to the heap in

Lisp implementations.

2

The trail stack contains the addresses of the variables that have to be reset when backtracking

occurs. It is similar to a database log file.

2.1.2 Environments

Environments are the WAM equivalent of activation records in procedural languages. They contain

the necessary information to implement procedure calls. They do not contain procedure arguments,

as arguments are passed in registers. They contain only those local variables which have to survive

a procedure call.

2.1.3 Choice Points

Choice points are records which save enough information about the a previous state of computation

to allow backtracking to come back to this state. They contain the values of all the stack pointers

at a given state of computation, as well as the contents of the active data registers. To backtrack

to a given state, the WAM resets all the variables whose addresses have been logged into the trail

stack since that state, then pops the stacks and restores the data registers to their previous values.

2.1.4 Variables and Untyped Pointers

Prolog variables can be seen as a special kind of data type. A Prolog variable can be in one of two

states: bound or unbound. The two operations which can be performed on a variable are to bind

it to a value or to read its value. A variable can be bound to any data object, including another

variable, except that binding a variable to itself has no effect. Once a variable is bound, it cannot

be bound again, unless it is reset to unbound by backtracking. The value of a variable is some

unique identifier when it is unbound, or the value of the object it is bound to.

In the WAM, each variable is associated with a memory location (or a register for temporary

variables). If the variable is unbound, it is usually implemented with a self-referencing pointer. If

the variable is bound, it contains either the object or a pointer to the object it has been bound

to. In case the object is itself an unbound variable, the variable is set to contain an untyped

pointer pointing to this variable. This mechanism may create long chains of untyped pointers to be

dereferenced at each access, but rarely does in practice [Tic85].

2.2 Automatic Memory Deallocation and the Need for Garbage Collection

One characteristic of Prolog programs, as opposed to Lisp or Smalltalk programs, is that upon

query completion, the space used by the data structures created during execution of the query

is automatically recovered, without the need for garbage collection. Moreover, within a query,

many programs deallocate by backtracking a large fraction of the memory cells they allocate, as

illustrated in table 1.

The programs we used in this simple experiment are as follows: BOYER, and BROWSE are Prolog

versions of the corresponding Lisp Gabriel benchmarks [Gab85]; CHAT is a natural language parser,

3

I PROGRAMS II Total Allocated I Ma:z:imum Used II Percentage I
boyer 2.331 2.331 100.0%

browse 0.896 0.065 7.2%

chat 0.731 0.006 0.8%

compiler 6.648 3.467 52.2%

quicksort 24.161 12.651 52.4%

Table 1: Memory Usage in MB

parsing 16 sentences; COMPILER is a version of the Berkeley Prolog compiler compiling a program

of 225 clauses and 87 procedures; quicksort is the quick sort program sorting a. list of 23880 sma.ll

integers.

Those programs which solve a. sequence of queries (CHAT) or rely on backtracking to explore

a search space (BROWSE) do not require garbage collection, while more deterministic programs

(COMPILER, BOYER, QUICKSORT) do. The memory recovery observed in COMPILER a.nd QUICKSORT

is mainly due to sha.llow backtracking. Better compilation technology than the one we currently

use will increase those percentages, by avoiding to allocate extra. storage on the global stack before

a clause ha.s been selected in a. deterministic procedure call.

Though in practice large programs display behaviors of arbitrary complexity, we expect tha.t

deterministic programs, or deterministic parts of large programs, are more likely to be in need for

garbage collection, since they do not ha.ve other means of recovering heap space. In section 4, we

give techniques to speed up garbage collection for deterministic programs.

2.3 The Trail Stack Contains Pointers from Old to New Objects

To speed up garbage collection, it is important to reduce the amount of memory that ha.s to be

scanned to find all the references into the memory area to be garbage collected [Ung87,Sha.87].

Previous researchers [AHS87,BM86] ha.ve pointed out tha.t it is possible to exploit the back

tracking mechanism to reduce the amount of memory tha.t ha.s to be scanned on garbage collection.

The ma.in observation is tha.t if one wants to collect the part global stack a.lloca.ted since the creation

of a. choice point C, it is only necessary to scan the portion of the stacks a.lloca.ted since the creation

of C. The backtracking mechanism assures tha.t all pointers from locations a.lloca.ted before the

creation of C pointing to locations created after the creation of C are accessible indirectly through

entries in the trail stack allocated after the creation of C.

The main drawback with this a.pproa.ch is tha.t we cannot predict in general the amount of

memory above the topmost choice point. In the extreme ca.se of a. deterministic program, the

use of choice points is trivial (sha.llow backtracking), and garbage collection cannot be localized.

Moreover, a.s we pointed out previously, deterministic programs are those programs which are most

likely to need ga.rba.ge collection.

4

To be able to use local garbage collection in a more general situation, we still have to guarantee

that pointers from an older location to a newer location are recorded in an appropriate log. This

log is to be processed during garbage collection to limit the amount of memory to be scanned. A

similar technique is used in [Ung87].

In a Prolog implementation, the obvious choice is to use the trailing mechanism to that purpose.

We decided to record in the trail every variable binding, which guarantees that the trail stack

contains the addresses of all pointers from old objects to new objects, and to leave to the garbage

collector the role of garbage collecting the trail stack. We discuss this issue further in section 6.6.

2.4 Living, Preserved and Dead Objects

Garbage collectors for Lisp or Smalltalk have only to deal with two kinds of objects: the living

objects, which are reachable from the registers, the control frames, and the global variables, and

the dead objects, which are not.

Backtracking introduces a third kind of object which we call preserved objects. A preserved

object is an object that is not directly accessible from registers and control frames, but is accessible

from the register values saved in choice points, or from the inactive parts of control frames saved

by the backtracking mechanism.

Let So be the initial state of the program, Sn the present state of the program, and S1, ... , Sn-1

be the intermediate states of the program currently saved by the backtracking mechanism. For any

preserved object, there is some integer k < n, such that the object is accessible from state Sk but

is not accessible from state Sk+1 , ••• , Sn. Any modification to the preserved object that may have

occurred since state Sk will be undone by backtracking before the object is ever referenced by the

program again. In particular, pointers contained in the preserved object that are newer than Sk

need not be followed by the garbage collector. Instead, these pointers can be reset to unbound.

This operation, akin to backtracking, is known a.s virtual backtracking [PB85,AHS87].

Virtual backtracking is an optimization of the garbage collector and may be ignored. In that

case, the garbage collector does not distinguish between preserved objects and living objects. In

section 6.5 we present a simple implementation of virtual backtracking derived from [AHS87] which

does not require marking bits, and we discuss the importance of this optimization.

2.5 The Logical Variable

The W AM implementation of Prolog logical variables makes use of untyped pointers to data struc

tures, which are normally automatically dereferenced when encountered, except when they are

self-referencing. Self-referencing pointers are used to implement unbound variables. These point

ers are guaranteed to always point from new to old objects, to prevent dangling references from

occurring on backtracking.

This ordering constraint and the presence of self-referencing pointers complicates the algorithms

based on copying or on pointer reversal techniques (see for example, the adaptation to Prolog of

5

Morris' algorithm [Mor79] in [AHS87]). Self-referencing pointers make variable sharing easy, but

relocation more difficult.

This ordering constraint does not need to be respected when the variable and the object it

points to are not separated by a choice point. A copying garbage collector can take advantage of

this fact.

2.6 Initialization of Local Variables

Local variables have to be initialized before each call to the garbage collector, to avoid the presence

of dangling references when the garbage collector is invoked.

In current WAM implementations, programs can only create a constant amount of objects

between two procedure calls. It is therefore sufficient to check for stack overflow at procedure entry.

This guarantees that the garbage collector will only be called at procedure entry. Consequently, we

only have to guarantee that variables are correctly initialized at procedure entry, which allows us

to dramatically reduce the number of initialization instructions that would be required otherwise,

as illustrated in table 2. An example of the optimization performed by the compiler is given below.

allocate 2

get_variable Y1,X1

call foo
put_val ue Y1, X2
put_variable Y2,X3

allocate

init Y1

init Y2
get_variable Y1,X1

call foo
put_value Y1, X2

put_variable Y2,X3

allocate

init Y2

get_variable Y1,X1

call foo
put_value Y1,X2

put_value Y2,X3

It should be noted that, when the first use of a local variable occurs after a procedure call,

the use annotation should be a value annotation instead of a variable annotation to ensure that

the binding is trailed, as illustrated in the preceding example. This is necessary in the case the

procedure call leaves a choice point, and the local variable is bound to an object created on the

global stack above this choice point. In this situation, the variable contains a pointer from an

object created before a choice point pointing to an object created after the same choice point, and

the garbage collector relies on the fact that every such pointer has been trailed to avoid scanning

the bottom part of the environment stack.

Some built-ins require an unbounded amount of space on the global stack (e.g. retroct). Since

they should also check for overfiow, and may invoke the garbage collector, their invocation should

be considered as a procedure call by the optimizer.

3 A Simple Garbage Collector

In this section, we will first present a simple version of our garbage collector. This algorithm is easy

to implement, does not require the complexity of algorithms based on pointer reversal techniques,

and displays good performance and locality.

6

PROGRAMS Before After Removed

boyer 19 0 100.0%

browse 34 7 79.4%

chat 768 85 88.9%

comp 977 105 89.3%

qsort 11 2 81.8%

Table 2: Initialization Optimization

We will first introduce some terminology that we will use throughout the rest of this paper.

Then we will describe our algorithm in more detail, and finally present some performance results.

3.1 Terminology and Basic Concepts

Our basic terminology is similar to the one used by (Sha87].

• new space is the part of the global stack, of fixed size, in which new objects are allocated

when created. The garbage collector only garbage collects new space. After each garbage

collection, the remaining living cells are added to old space. In our scheme, we lock new

space at the top of the address space allocated to the global stack. This has the double

advantage of increasing the locality of the executing program and simplifying the garbage

collector; a similar trick was used by Ungar [Ung87]. H is the pointer pointing at the next

free location of new space.

• old space is the part of the global stack that contains all the data objects that have survived

a garbage collection. It is formed of one contiguous segment of address space, at the bottom

of the global stack. Its size is only limited by the size of the address space. H2 is the pointer

pointing at the next free location of old space.

• copy space is the part of the global stack just above old space in which the garbage collector

copies the surviving objects. It is added to old space when the garbage collector completes

its work.

• base space is the part of the memory which contains references to objects in new space that

have to survive a garbage collection. In the case new space starts at a choice point boundary,

base space is only composed of the part of the environment stack, the choice point stack

above this choice point, as well as the memory locations pointed to by entries in the trail

stack above this choice point [BM86,AHS87]. Since in general new space does not start at a

choice point boundary, we keep track of stack pointer variations to determine the exact limit

of base space. This is explained in more detail in section 3.3.

We choose the simplest possible design by making objects in new space which survive only

one garbage collection elements of old space, and therefore no longer candidates for subsequent

7

NEW SPACE BOYER COMPILER

IN KB global trail global trail

16 24.8% 0.4% 17.1% 3.4%
32 22.4% 0.3% 11.2% 1.9%

64 20.4% 0.1% 9.0% 1.5%

128 18.6% 0.1% 6.8% 1.0%

256 16.8% 0.0% 5.4% 0.8%

512 13.8% 0.0% 4.0% 0.6%

1024 11.8% 0.0% 2.6% 0.6%

2048 11.5% 0.0% 2.4% 0.6%

Table 3: Garbage Collection Survival Rate

garbage collections. In other words, we only support two generations of objects: old and new.

We believe that this is the adequate choice for Prolog for two reasons. First, most objects do

not survive their first garbage collection, as illustrated in table 3. (Our results agree with similar

studies for Lisp and Smalltalk. For Lisp, Shaw found the proportion of new objects which survive

their first garbage collection to be between 10% and 30% with a new space size of 32KBytes. For

Smalltalk, Ungar found 20% of survivors after their first garbage collection with a new space size

of20KBytes [Ung87]). By garbage collecting objects only once, we can expect to recover 70 to 90%

of the garbage cells. Second, Prolog programs have other means of recovering memory, through

backtracking or query completion. We thus do not have to worry as much about the management

of very old objects.

An important point to note is the very low survival rate of pointers in the trail stack. The trail

stack should not be neglected; the amount of trail stack scanned by the garbage collector is roughly

85% of the amount of global stack scanned for BOYER, and 45% for COMPILER. While interpreting

these data, it should be kept in mind that our implementation trails every variable binding.

3.2 Invocation Mechanism and Area Overflow

The garbage collector can only be invoked at procedure entry or inside the few built-ins which

are not guaranteed to allocate a fixed amount of memory. This has the advantage of reducing the

number of stack over.fiow checks, when not detected by hardware, and allows us to optimize the

local variable initialization code, as mentioned above.

At procedure entry, H is checked against the address space limit. On over.fiow, the garbage

collector is called. To prevent over.fiow from happening between two procedure calls, a provision

for overflow is made at the top of new space.

Builtins which may create large objects should either know in advance how much memory they

will need, or be restartable. The case of a built-in needing more space than an entire new space

should be handled properly. The simplest solution is to first garbage collect new space, and then

8

allocate the new object on the top of old space.

3.3 Bookkeeping and Overhead on Normal Execution

Our scheme requires the use of several additional registers to maintain information on which part

of the memory needs to be scanned at the next garbage collection. These registers need not be

saved in choice points.

The bookkeeping required by our algorithm is as follows:

1. we need to maintain two heap pointers, H and H2, instead of one. H2 needs only be updated

in the case when failure deallocates ne'll space entirely which is a rare event. (with ne'll

space of size 16KB, this event only occurred 109 times in the COMPILER benchmark). Just

give the data for compand beyer, and for window= 32)

2. there is a similar bookkeeping to perform for the two trail stack pointers TR and TR2. TR2

points at the top of the stack, while TR2 contains the lowest value of TR since the last

garbage collection.

3. we also maintain a E and a E2 pointer. The E points to the current environment, which

may not be at the top of the stack. The E2 pointer contains the lowest value of E since the

last garbage collection. There is more overhead associated with the E pointer, since it has

has also to be maintained on environment deallocation (the deallocate instruction in the

WAM).

The use of E2 is not as crucial than the use of H2 and TR2, since the environment stack is

typically much smaller than the global stack or the trail stack. It could be dispensed of, at the cost

of some unnecessary scans of environments during garbage collection.

There is no need to maintain B2 pointers for choice points, since this information can be easily

retrieved from the H2 or E2 pointers by the garbage collector.

3.4 Marking

Our marking algorithm is straightforward. It does not implement virtual backtracking, and treats

preserved objects as dead objects. We will discuss in section 6.5 how it is possible to extend our

algorithm to implement virtual backtracking.

Marking proceeds recursively from all the pointers in base space pointing into ne'll space. It

does not need to visit the objects outside ne'll space it may encounter [BM86,AHS87]. The locality

of base space and ne'll space guarantees the locality of our marking algorithm. During this phase,

we can use copy space as a recursion stack for recursive marking, which is simpler and faster than

its more space efficient alternatives [Coh81]. We discuss the use of marking bits in section 6.4.

9

WINDOW SIZE elapsed time page faults speedup

(KB) average 90 percentile average 90 percentile

16 185.4 0.74% 0.00 ± 0.00 1.31

32 184.1 0.52% 0.00 ± 0.00 1.32

64 182.7 0.33% 0.00 ± 0.00 1.33

128 182.7 0.74% 0.00 ± 0.00 1.33

256 181.3 0.21% 0.00 ± 0.00 1.34

512 184.0 1.11% 4.14 ± 5.98 1.32

1024 215.9 1.09% 360.43 ± 29.46 1.13

2048 243.1 2.33% 752.00 ± 31.22 1.00

Table 4: Paging Performance with the Boyer Benchmark

3.5 Compacting

The compacting phase of our algorithm simply slides down the marked cells in new space to copy

space, updates the internal pointers on the fly, and leaves behind in new space the corresponding

relocation addresses. Unmarked cells are also overwritten with the relocation address of the most

recent marked cell encountered; this is for simplifying the next phase of the algorithm.

3.6 Updating

The algorithm finally rescans base space in search for pointers to new space· to be updated to

their new value. It uses the relocation table now contained in new space for that purpose. It also

updates the global stack pointer (H) choice point entries by using the relocation table.

3.7 Performance Results

We measured the paging and elapsed time performance of our algorithm on a Sun 3-50, with 3.2MB

of physical memory, running Sun Unix 4.2 release 3.2. The benchmark used is BOYER.. We varied

the size of new space from 16 to 2048 KBytes. The benchmark was run 7 times; we give the average

results as well as the confidence interval for the 90 percentile. The results ar.e given in table 4.

We believe that these results are not as dramatic as they should be for a faster system. Our

measurements were taken on a byte-code emulator, which performance is roughly 3 to 6 times

slower than Quintus Prolog. All other things being equal, speeding up our emulator by a factor

of 3 in program execution would make the lack of locality of the exhaustive garbage collector look

worse than the more local garbage collectors by a factor of 2 instead of 1.3.

For high-e_nd machines, the lack of locality is even more costly. In a previous implementation

of our algorithm, also on a relatively slow byte-code emulator, we observed a reduction by a factor

of 20 of the number of page faults on an IBM 3081, and a speedup of the program by a factor of

10

1.5 for a maximum ne'll space size of 512KB. Unfortunately paging measurements for time sharing

systems are heavily dependent on the load, and thus are not very accurate.

4 Taking Advantage of Copying Algorithms

The algorithm we introduced in the previous section displays much higher locality than exhaustive

garbage collectors. By reducing paging, it is has the potential of reducing the elapsed time of spent

in program .execution. To increase the performance of the garbage collector in terms of cpu time,

we propose to take advantage of copying algorithms.

We first propose a simple algorithm which takes advantage of copying only when the entire ne'll

space is above the topmost choice point. We then investigate a more general way to incorpora:.te

copying into our algorithm to extend its scope of applicability.

4.1 A Simple Scheme using Copying Algorithm

This simple scheme works as follows: whenever the garbage collector is called, it tests to see whether

the entire ne'll space is above the topmost choice point. If it is the case, it uses a copying algorithm

to perform garbage collection. It is possible to do so since in that case the relative order of the data

structures in ne'll space need not be maintained. Otherwise, it uses the marking and compacting

algorithm we presented previously. We describe the copying algorithm we use in more detail in the

next subsection.

4.1.1 The Copying Algorithm

The copying algorithm we used is directly derived from classic copying techniques ([Che70,Bak78]).

It proceeds as follows: for each pointer into ne'll space pointing to an unmarked object, the ob

ject pointed to is copied into old space. The original copy is marked and replaced by relocation

pointers pointing to the corresponding locations into old space. Pointers to marked locations are

immediately relocated.

The only potential difficulty in adapting copying algorithms to Prolog is due to the presence

of untyped pointers. An untyped pointer can point to an element of a structure or a list. In a

straightforward implementation, if the copying algorithm encounters first the pointer and later the

structure or the list, the cell pointed to by the untyped pointer will be copied twice. In the present

case, however, the entire ne'll space is guaranteed to be above the topmost choice point. Therefore

there is no need to maintain untyped pointers into ne'll space to' guarantee the correctness of the

backtracking mechanism. Our algorithm simply removes all untyped pointers pointing into ne'll

space.

11

WINDOW SIZE mark & compact copy speedup

(KBYTES) average 90 percentile average 90 percentile

16 4.51 0.55% 3.37 1.07% 1.34

32 4.17 1.08% 3.04 1.61% 1.37

64 3.95 0.84% 2.87 1.06% 1.38

128 3.62 1.17% 2.59 0.42% 1.39

256 3.27 1.50% 2.31 1.17% 1.41

512 3.04 1.30% 2.10 1.67% 1.45

1024 2.95 1.01% 1.97 1.61% 1.50

2048 2.99 1.20% 2.03 1.07% 1.47

Table 5: Performance of Improved GC with the Boyer Benchmark·

4.1.2 Performance

We compared the efficiency of the copying algorithm with our previous algorithm based on mark

and compact. We used BOYER as a benchmark and the Unix getrusage system call to measure

the time spent in the garbage collector. The benchmark was run 6 times. We give the average

results as well as the confidence intervals for the 90 percentile in table 5. In this measurement, the

program was entirely deterministic, and only the faster copy algorithm was used by the enhanced

algorithm.

By comparing the data of table 5 with the data of table 3, we can see that the experiments

confirm the fact that copying perform better with lower survival rates. For example, similar exper

iments with the QUICKSORT benchmark yields speedups of up to 1.86 for a survival rate of 4.9%,

with 1024KB allocated to new space.

4.2 An Improvement on the Simple Scheme using Copying Algorithm

We can extend the scope of applicability of the copying algorithm as follows. At each garbage

collection call, we interweave marking and copying. Copying is used whenever a pointer to the

first choice point segment in new area is encountered; otherwise marking is performed. There is

little difficulty in doing so since marking and copying can follow the same order of traversal of

the program data structures. We will give more details on this technique in the next section. We

present our performance results in the following sec?on.

4.2.1 The Extended Copying Algorithm

Once marking has completed for the upper part of new space, copying has completed for the lower

part. Compaction can be then be performed for the upper part.

It is straightforward to interweave marking and copying, since both algorithms proceed the

same way, by traversing rec~rsively a data structure. Our implementation uses both a stack for

12

WINDOW SIZE mark & compact mark & copy speedup

(KBYTES) average 90 percentile copy mode average 90 percentile

16 7.68 1.01% 42.2% 7.30 1.41% 1.05

32 5.36 0.91% 34.7% 4.97 1.82% 1.08

64 4.57 1.09% 23.3% 4.38 1.73% 1.04

128 4.06 1.20% 20.9% 3.80 1.45% 1.07

256 3.63 1.00% 12.7% 3.56 1.66% 1.02

512 3.13 0.70% 14.3% 2.96 1.81% 1.06

1024 2.97 0.75% 1.6% 2.92 2.96% 1.01

2048 1.99 0.99% 0.0% 2.04 2.77% 0.97

Table 6: Mark and Copy over Mark and Compact: Speedup

recursive marking, and Cheney's algorithm queue for copying. Processing a reference to new space

is completed when both the stack and the queue are empty.

It is no longer possible in general to skip untyped pointers, as in the case the entire new space

is above the topmost choice point. To avoid copying a. structure or a list cell twice, we need now

to delay the processing of untyped pointers pointing into the lower part of new space. Only the

copying of the cell referenced by an untyped pointer is delayed. If this cell contain a typed pointer

to a Prolog object, this object is copied and the pointer is relocated without delaying.

With virtual backtracking, it is necessary to ensure that cells which copied is delayed are

marked when first visited. The reason is that virtual backtracking relies on the fact that the

garbage collector marks every object accessible from states Sk, ... , Sn before resetting all bindings

made after Sk to unmarked objects, and breaks down if marking of some cells is delayed.

4.2.2 Performance

The algorithm described previously has more overhead than the simple, fast copying algorithm we

introduced in the previous section. The main performance degradation comes from the overhead of

deciding whether a pointer to new space points into the lower part or the upper part. We estimate

the performance degradation to be-of the order of 10%.

The other main factor which determines the overall performance of our enhanced algorithm is

the percentage of cells which are collected with the copying algorithm. This percentage needs to be

relatively high for us to be able to obtain a significant speedup (this is an instance of application

of Amdhal's law [Amd67]). Unfortunately, this percentage decreases with the window size. For

large window sizes, mark and compact may indeed be faster than mark and copy due to the extra

overhead inherent to the mark and copy approach.

The experimental data confirms this analysis, as displayed in table 6. Our data have been

obtained with the COMPILER benchmark described in section 2.2.

(The poor performance of the mark and copy algorithm on the COMPILER benchmark, which

13

I PROGRAMS II Quintus run time I GC cpu time I ratio I
boyer 16.1 2.3 14.2%

compiler 82.6 3.6 4.4%

quicksort 85.5 8.6 10.1%

Table 7: GC Cputime Overhead

is an essentially deterministic program, is surprising. Closer look at the program indicated that in

many parts of the program, choice points were not removed a.s early a.s possible.)

4.3 Overall Performance

To corroborate our claims of efficiency, we measured the cpu overhead of our garbage collection

algorithms, for a size of new space of 256KB, a.s compared to the run time of Quintus Prolog of

the same benchmark. The measurements where taken on a VAX 8600, running Quintus Prolog 1.6.

They are given in table 7. The measurements are only indicative, since the two implementations

may not use the same data structure representations. Quintus Prolog wa.s given enough space to

execute without garbage collection.

Given the survival rates in table 3, we can interpret these data a.s follows: for the memory

intensive BOYER. benchmark, the garbage collector increases the size of the global stack by a factor

of 6.0 for a cpu overhead of 14.2%. For the COMPILER. benchmark, it extends the global stack by a

factor of 18.5 for a cpu overhead of 4.4%.

5 Hardware and Operating System Support

Our algorithm is simple, and does not need any specialized hardware support to run with good

performance. However, there are some simple primitives that would speed it up if they were made

available to the program.

The first and most obvious remark is that the hardware should provide enough general purpose

registers for the software to be able to permanently allocate the H2, E2 and TR2 pointers in

registers without forcing the compiler to generate too many spills to memory. We believe that 32

registers should be enough for that purpose.

The second hardware feature that will enhance performance is to have stack overflow checks

done in hardware. This could be done on page boundaries only without affecting performance. In

other words, this could be implemented by providing basic hardware support for virtual memory

and putting the responsibility of detecting stack overflow on the operating system.

Basic hard ware support for virtual memory could also be used by the garbage collector to make

unnecessary the use of the E2 pointer, and to limit trailing to those bindings which need to be

undone on backtracking. The operating system could easily be modified to indicate on request to

14

the garbage collector which pages have been modified since the last garbage collection, as suggested

by Shaw [Sha87]. Only these pages may contain pointers to new space, and thus only these pages

need to be scanned.

6 Side Issues

6.1 Interaction with Virtual Memory

The interaction between Prolog systems and virtual memory is not as friendly as one might expect.

One problem originates from the stack allocation mechanism. After a deep failure, or after query

completion, a large chunk of the global stack is deallocated. Unfortunately, there is usually no way

to tell the virtual memory system that t:b.e corresponding pages of a deallocated chunk of virtual

address space can be freed. As a consequence, unnecessary page faults will occur when the next

query is started. This phenomenon has been studied by Ross and Ramamohanarao [RR86]. Our

garbage collector, by constantly compacting the data structures of the executing program reduces

this effect.

6.2 Applying Copying to Several Choice Point Segments

One possible generalization of our mark and copy algorithm is to apply copying to more choice

point segments that just the last one. There are two difficulties with this scheme: the first one is

that we cannot determine the final address of an object living in a choice point segment without

having completed the garbage collection of all the segments under it. Copying can still be used,

but a second pass is then required on the survivors as well as on base space to relocate the objects

to their final position, making copying less attractive.

The second difficulty is that the algorithm needs to know into which choice point segment a

given pointer points. This induces an extra cost of the order of (1 +log cp), where cp is the number

of choice point segments garbage collected by copying. For these two reasons, we do not think that

this approach can lead to any significant speedup over our basic mark and compact algorithm.

6.3 Choosing the Size of New Space

Using too large a new space will cause poor locality, as illustrated in table 4. On the other hand,

using too small a new space will increase the survival rate and cpu time consumed by the garbage

collector as. illustrated in table 3 and table 7. The right compromise is system dependent. Some of

our previous experiments indicated as adequate a value of 32KB for mainframe computers, 256KB

to 512KB for workstations. There is no difficulty in letting the programmer adjust the size of new

space to his or her specific needs.

15

6.4 Marking Bits vs. Marking Table

It is entirely possible to implement our algorithm using marking bits. Only one bit per word is

necessary. In fact, our first implementation was designed that way. In the present implementation,

we experimented with the use of a marking table. The use of a marking table is made possible by

the fact that the size of new space is fixed. Since our implementation was targeted towards 32-bit

word, byte-addressable general-purpose machines, we decided to use one byte of mark per word in

new space. This causes a space overhead of ~ of the size new space, but allows faster access to

the marks.

The overhead of initializing the mark table can be asymptotically reduced by a factor of 255

by using a rotating mark, incremented at each consecutive call to the garbage collector, in the

sequence (1, ... , 255, 1).

· 6.5 Virtual Backtracking

We implemented virtual backtracking in all of our algorithms. We basically used the scheme

described in [AHS87]. The main difference is that our scheme does not mark the environments to

keep track of previous visits during the marking phase.

It is possible to maintain one extra environment pointer to determine which part of a given

environment has already been visited. As the environment chain protected by a given choice point

is visited, this pointer is set to point to the top of the chain of the previous choice point. It is

moved down the environment stack to the last environment-in its chain before the environment

where the two chains merge. We suppose the Prolog system allows us to determine the size of an

environment as viewed by any of its children by looking at some fixed offset of the return address

saved in the child environment. This condition is fulfilled in the WAM.

Our experiments with virtual backtracking were disappointing, as we did not find any advantage

in using it for most of our benchmarks. Only with CHAT and a new space size of 4KB we were

able to obtain some improvement, with a very high survival rate of 80.5% was somewhat reduced

to 75.1% by virtual backtracking; with a size of 8KB, the garbage collector was not even called.

Our conclusion is that we did not find sufficient evidence that the extra complexity of virtual

backtracking is worth implementing, with the usual caveat that we only check on a few large

programs.

6.6 Trailing every Binding

Trailing every binding does not necessarily cause overhead. Whether it does depends on two factors:

the relative cost of doing the trailing and of checking whether it is necessary to trail; the proportion

of trails which can be avoided at binding time. On many machines, checking will be more expensive

than trailing.

In [TD87], Touati and Despain made some measurements on the proportion of trails which can

be avoided at binding time. The proportion varied widely from benchmark to benchmark, but were

16

found between 30% to 70% for most benchmarks. The surviving tra.il entries will have to be checked

a. second time during garbage collection. It may be more efficient to delay the check on tra.il entries

by trailing every binding, and recovering the storage on garbage collection. As the data in table 3

indicate, at garbage collection time we can predict the output of the check with high accuracy.

7 Comparison with Previous Work

The first attempt in using the ideas from generation scavenging was [PB85). Their approach was

based on choice point segments. For each choice point, they allocated a different logical segment

of memory, and used this choice point segment as a unit to perform garbage collection. We believe

that this scheme is more complex than ours, and more disruptive of the basic WAM organization.

Unfortunately, the authors do not give performance data.

The first study to notice that garbage collecting above the topmost choice point is significantly

simpler than the general case was [BM86). The main difference between theirs and ours is the trap

mechanism: ours is automatic, determined dynamically by window overflow; theirs requires the

intervention of the programmer.

Several Prolog implementations [BBCT86,NI86,AHS87] have used the pointer reversal tech

niques introduced by [Mor78). The most recent WAM garbage collector we are aware of was

described in (AHS87). Though the authors are aware of the fact that partial garbage collection per

forms much better than exhaustive garbage collection, they do not propose any scheme to exploit

it. Moreover, their design is still based on compaction algorithms that do not use extra memory

space, which are more complex, and, we believe, slower than ours.

8 Conclusion and Future Work

We designed and implemented a Prolog garbage collector than displays good locality and high cpu

performance. We modified our Prolog implementation to allocate new objects a.t the top of the

global stack address space, in an area of fixed size. By calling the garbage collector each time

this area overflows, we were able to ensure good locality. By making use of copying algorithms

rather than marking and compacting algorithms on appropriate parts of the area to be garbage col

lected, we were able to significantly improve the cpu performance of our algorithm on deterministic

programs. We were disappointed with our experience with virtual backtracking, where the extra

implementation complexity does not seem to pay off.

Future work will include the assessment of multiple generation schemes, as well as the study of

the relationship between garbage collection and the dynamic resizing of stacks as originally done

in DEC-10 Prolog [WP77).

17

Acknowledgements

We would like to thank Yasuo Asakawa, David Bowen, Chien Chen, Bruce Holmer, Hideaki Ko

matsu, Tim Lindholm, Richard O'Keefe, Naoyuki Tamura, Peter Van Roy, Jim Wilson and Ben

Zorn for the time they spent discussing many of these ideas and their helpful comments on earlier

drafts.

Partial support for this work was generously provided by the California MICRO program, the

Defense Advanced Research Projects Agency (DoD) Arpa Order No. 4871, Monitored by Space and

Naval Systems Warfare Command under Contract No. N00039-84-C-0089, and by assistance from

mM Corporation, Digital Equipment Corporation and NCR Corporation. Part of this work was

performed when the first author was visiting mM Tokyo Research Laboratory during the summers

of 1986 and 1987 and published in [TH88).

References

[AHS87] K. Appleby, S. Haridi, and D. Sahlin. Garbage collection for prolog based on warn. Tr, IBM,
IBM Thomas J. Watson Research Center PO Box 218 Yorktown Heights, NY 10598, June 1987.

[Amd67] G.M. Amdhal. Validity of the single processor approach to achieving large scale computing
capabilities. In AFIPS Spring Joint Computer Conference, pages 483-485, April1967.

[Bak78] Henry G. Baker, Jr. List processing in real time on a serial computer. Communications of the
ACM, 21(4):280-294, April1978.

[BBCT86] K. A. Bowen, K. A. Buettner, I. Cicekli, and A. K. Turk. The design and implementation of a
high-speed incrementable Prolog compiler. In E. Shapiro, editor, Third International Conference
on Logic Programming. Springer Verlag, Lecture Notes in CS 225, July 1986.

[BM86] J. Barklund and H. Millroth. Garbage cut for garbage collection of iterative Prolog programs.
In 3th Symposium on Logic Programming, Salt Lake City, September 1986. IEEE.

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the A CM,
13(11):677-678, November 1970.

[Coh81] Jacques Cohen. Garbage collection of linked data structures. ACM Computing Surveys,
13(3):341-367, September 1981.

[Gab85] R. P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press series in Computer
Systems. The MIT Press, 1985.

[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes o ,objects.
Communications ofthe ACM, 26(6):419-429, June 1983.

[Moo84] David A. Moon. Garbage collection in a large Lisp system. In Conference Record of the 1984
ACM Symposium on LISP and Functional Programming, pages 235-246, Austin, Texas, August
1984.

(Mor78] F. Lockwood Morris. A time and space efficient garbage collection algorithm. Communications
of the A CM, 21(8):662-1>65, 1978.

(Mor79] F. L. Morris. On a comparison of garbage collection techniques. Communications of the ACM,
22(10):571, October 1979.

(Nl86] Nishikawa and M. Ikeda. Psi no garbage collector (in japanese). TR 213, ICOT, 21F, Mita
Kakusai Bldg., 4-28 Mita 1, Minato-ku, Tokyo 108, Japan, 1986.

18

[PB85] E. Pittomvils and M. Bruynooghe. A real time garbage collector for Prolog. In 2nd Symposium

on Logic Programming. IEEE, 1985.

[RR86] M. L. Ross and K. Ramamohanarao. Paging strategy for Prolog based on dynamic virtual

memory. In Third Symposium on Logic Programming, pages 46-55, September 1986.

[Sha87] R. A. Shaw. Improving garbage collector performance in virtual memory. CSL-TR 87-323,

Stanford University, CSL, Stanford University, Stanford, CA 94305-4055, March 1987.

[TD87] H. Touati and A. Despain. An empirical study of the Warren Abstract Machine. In 4th Sympo

sium on Logic Programming, San Francisco, September 1987. IEEE.

[TH88] H. Touati and T. Hama. A light-weight prolog garbage collector. In International Conference on

Fifth Generation Computer Systems 1988, Tokyo, Japan, November 1988. !COT.

[Tic85] E. Tick. Prolog memory-referencing behavior. 85 281, Computer Systems Laboratory, Stanford

University, Palo Alto, California, September 1985.

[Ung87] D. Ungar. The Design and Evaluation of a High Performance Smalltalk System. ACM Distin

guished Dissertations. The MIT Press, 1987.

[War83] D. H. D. Warren. An abstract prolog instruction set. Technical report, SRI International, Arificial

Intelligence Center, August 1983.

[WP77] D. H. D. Warren and L. M. Pereira. Prolog -the language and its implementation compared

with lisp. In Symposium on Artificial Intelligence and Programming Langages, pages 109-115,

August 1977.

19

wed Aug 24 16:53:41 1988 1

/* Copyright Herve' Touati, 1988, Aquarius Project, UC Berkeley */

/*

1-------------------------------------- <- BO
I 1 Choice Point Stack
I
1-----------------1-------------------- <- B
I \1/
I
I
I /1\
1-----------------1-------------------- <- E
I
I Environment Stack
I <- EO

1-------------------------------------- <- HMAXHARD
I <- HMAXSOFT
1 New Space
I <- HMIN

Marking Area

-------------------------------------- <- MKMIN
<- TRO

Trail Stack

-----------------1-------------------- <- TR
\1/

/I\
-----------------1-------------------- <- H2

Global Stack
I
1-------------------------------------- <- HO

*I

memory.h, page 1

/*Copyright HeNe' Touati, 1988, Aquarius Project, UC Berkeley*/

extern CeiiPtr S;
extern CeiiPtr BO;
extern CeiiPtr B;
extern CeiiPtr EO;
extern CeiiPtr E;
extern CeiiPtr TR;
extern CeiiPtr TRO;
extern CeiiPtr HO;
extern CeiiPtr H;
extern CeiiPtr R;
extern CeiiPtr RO;
extern lnstrPtr PO;
extern lnstrPtr P;

#ifdef WITH GC
extern CeiiPtr H2;
extern CeiiPtr TR2;
extern CeiiPtr E2;
extern CeiiPtr HMIN;
extern CeiiPtr HMAXSOFT;
extern CeiiPtr HMAXHARD;
const lnt HMAX_SECURITY = 256;
extern unsigned char* MKMIN;
#end if

r points to an escape that signals successful termination •;
extern lnstrPtr CPO;
r points to a fail instruction ·;
extern lnstrPtr FPO;
r points to an escape that signals unsuccessful termination *I
extern lnstrPtr NPO;
r points to the metaca/1 escape *I
extern lnstrPtr MPO;
extern lnt next_instruction;
enum {
#define use(Name,ID,Coeff,Reg,Type)\

10,
~ndude"rnernory sizes.h"
#undefuse -

LAST_SIZE
} ;

extern lnt memory_sizesO;
extern Cell NIL;
extern Cell LIST _FUNCTOR;

class Memory {
public:
void init();
StringTable* ST;
Memory(StringTable& table);
void allocate();

} ;

#define NUMBER OF REGISTERS 8
extern Cell XD; - -

r layout of an environment *I
r B E P Y1 Y2 Y3 ... •;
/*-3 -2 -1 0 1 2 */
enum {

B_ENV _OFFSET • -3,
E_ENV _OFFSET=- -2,

memory.h, page 2

P ENV OFFSET • -1,
Y1 ENV OFFSET • 0, - -
};

r position of E above the top of the stack when an env is created "I
enum {

E_TOP _OFFSET .. 3
} ;

r Layout of a choice point •1
r E H TR P SIZE X1 X2 X3 ... "I
r 1 2 3 4 s 6 7 s 9 "I
r the CP stack grows donwards, so Xi are the first pushed on the stack "I
r and B points at the top of the stack "I
r A is the top of the environment stack •1
r always equals to E except for those stupid intra-clause choice "I
r points ·1
enum {

E CP OFFSET • 1,
H-CP-OFFSET,. 2,
TR_CP _OFFSET- 3,
P CP OFFSET • 4,
SiZE CP OFFSET • 5,
X1_C-P _OFFSET= 6,
FIXED_CP _SIZE • 5
} ;

mark_copy.h, page 1

i Copyright Herve· Touati, Aquarius Project, UC Berkeley •;

extern void mark_from_base(Cell*):
extern void mark_from_base_sweep(Cell*);
extern void copy_from_base(Cell*);

struct UpStack {
Cell* sp;
Cell* spO;
void init(Cell* p) {spO .. sp = p;}
Cell* bottom() {return spO;}
Cell* top() {return sp;}
void push(Cell* val) {*sp++ = cell(val);}
Cell* pop() {return cellp(*-sp);}
int nonempty() {return (sp > spO);}

} ;

struct DownStack {
Cell* sp;
Cell* spO;
void init(Cell* p) {spa .. sp = p;}
Cell* bottom() {return spO;}
Cell* top() {return sp;}
void push(Cell* val) {*sp-- = cell(val);}
Cell* pop() {return cellp(*++sp);}
lnt nonempty() {return (sp < spO);}

} ;

i basic data structure to implement Cheney's copy algorithm *I
struct CopyStack {

Cell* first;
Cell* second;
void init(Cell* p) {first = second = p;}
Cell* top() {return first;}
void push(Cell val) {*first++= val;}
Cell* pop() {return second++:}
lnt nonempty() {return (first> second);}

} ;

inline Cell* max(Cell* a, Cell* b)
{

return (a> b) ? a : b;
}

inline Cell* min(Cell* a, Cell* b)
{

return (a< b) ? a : b;
}

extern void init_stats();
extern void display_stat1(char*, lnt, lnt)~
extern void init_marking_table():
extern CeiiPtr 82, HMIDDLE;
extern unsigned char MARK;

i UTILITIES */

inline int to_new_space(Cell* p)
{return (p <H) && (p >-= HMIN);}

inline int pointer_to_new(Cell val)
{return (get_tag(val) != TAGCONST && to_new_space(addr(val)));}

i better be sure p points to new space •;

mark_copy.h, page 2

inline Cell* reloc_addr(Cell* p)
{ return cellp(*p);}

inline void set_reloc_addr(Cell* p, Cell* new_addr)
{ *p. cell(new_addr);}

inline Cell check_and_relocate(Cell var)
{

lnt tag- get_tag(var);
Cell* ptr = addr(var):
If (tag!· TAGCONST && to_new_space(ptr))

return makeJ)tr(tag, reloc_addr(ptr));
else

return var;

/* suppose that p is an address to a location in new space *I
/*please do the check!! note: new space contain a relocation table. *I
overload relocate;
inline Cell relocate(Cell var)
{return makeJ)tr(get_tag(var), reloc_addr(addr(var)));}

inline Cell relocate(lnt tag, Cell* p)
{return makeJ)tr(tag, reloc_addr(p));}

inline void mark(Cell* p)
{ MKMIN[p- HMIN]"' MARK;}

inline lnt marked(Cell* p)
{return (MKMIN[p- HMIN] •• MARK);}

inline lnt unmarked(Cell* p)
{return (MKMIN[p- HMIN] !·MARK);}

extern void store_regs_in_env():
extern void restore_top_env():

struct Env {
Cell* e;
lnt size;
tnt already_treated;
void next() {
size= instrp(e[P _ENV_OFFSET])->arg2; /* P points to the call instr *I
already_treated- 0;
e = cellp(e[E_ENV_OFFSET]);

}
Env() {}
Env(Cell* E) {init(E) ;}
void init(Cell* E) {

e = E;
next();

}
void treated(lnt n) {already_treated = n;}
void mark();
void fast_ copy();
void mark_sweep();
void update();

} ;

struct ChoiceRecord {
Cell* tr;
Cell* e;
Cell* h;

};

mark_copy.h, page 3

struct Choice {
Cell* b;
Env already_done;
Env preserved;
Cell* tr;
Choice(Cell*, Cell*);
void next() {

b = b + FIXED_CP _SIZE+ b[SIZE_CP _OFFSET];
preserved.init(cellp(b[E_CP _OFFSET]));

}
int last() { return (b >= 82); }
void mark();
void mark_sweep();
void virtual_backtrack();
void virtual_backtrack_sweep();
void mark_preserved_envs();
void mark_preserved_envs_sweep();
void update();
void update_preserved_envs();

};

extern void cp_to_cp_forward();
extern void cp_to_cp_backward();

r The TRAIL STACK*/

enum {
TRAIL_SKIP,
TRAIL_KEEP,
TRAIL_RELOC,
TRAIL IND RELOC,
TRAIL-COPY RELOC, - -
TRAIL_MARK
} ;

r sort of a cp cache, with some control info. •;
r the main point is to make sure that the TR entries are updated "I
r after the former values are read *I
struct TraiiCP {

Cell* b;
Cell* next b;
Cell* last_b;
Cell* tr;
Cell* next tr;
Cell* e; -
Cell* h;
TraiiCP(Cell* 82, Cell* 8) {b = 82; last_b • 8; init();}
lnt nonempty() {return (b > last_b);}
void init() {next_b- b;

next_tr = cellp(b(TR_CP _OFFSET]);
next();}

void next() {b = next_b;
e = cellp(b[E_CP _OFFSET]);
h == cellp(b[H_CP _OFFSET]);
tr ... next_tr;
next_b = b- (FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]);
next_tr .. cellp(next_b(TR_CP _OFFSET]);}

void update_tr(Cell* tr) { next_b[TR_CP _OFFSET]= cell(tr);}
lnt pass1_action(Cell* ptr) {

If (ptr >= e II (ptr < EO && ptr >=h))
return TRAIL SKIP;

else If (ptr >= E211 (ptr <EO && ptr >= HMIN))
return TRAIL_KEEP;

mark_copy.h, page 4

else
return (pointer_to_new(*ptr))? TRAIL_MARK: TRAIL_KEEP;

}
lnt pass2_action(Cell* ptr) {

#ifdef WITH VIRTUAL BACK
If (*ptr •• -make_ptr{TAGREF,ptr))

return TRAIL_SKIP;
else If (to_new_space(ptr)) {

#else
If (to_new_space(ptr)) {

#end if
If (unmarked(ptr))

return TRAIL_SKIP;
else

return (ptr >• HMIDDLE) ? TRAIL_RELOC :TRAIL_ COPY _RELOC;
} else
return TRAIL_IND_RELOC;

}
lnt pass2_action_sweep(Cell* ptr) {

#ifdef WITH VIRTUAL BACK
If (*ptr =• -make_ptr(rAGREF,ptr))

return TRAIL_SKIP;
else If (to_new_space(ptr)) {

#else
If (to_new_space(ptr)) {

#end if

}
} ;

If (unmarked(ptr))
return TRAIL_SKIP;

else
return TRAIL_RELOC;

} else
return TRAIL_IND_RELOC;

extern void gccontrol_pass2();

enum {
SHOULD_COPY,
SHOULD_MARK,
SHOULD_ CHECK_MARK,
SHOULD RELOC,
SHOULD=NEITHER,
SHOULD_LEAVE
} ;

extern void mark_compact();
extern void fast_ copy();
extern struct rusage gc_rusage;
extern lnt getrusage(...);
extern CeJJPtr H_entry_value;
extern CeJJPtr H2_entry_value;
extern CeiiPtr TR_entry_value;
extern CeiiPtr TR2_entry_value;

extern void gc_init();
extern void global_sweep();
extern void restore_cps();
extern ChoiceRecord SAVED CP;
extern void gctrail_pass 11 (); -
extern void compute_stats();

• I

fast_copy.c, page 1

/"Copyright Herve' Touati, Aquarius Project, UC Berkeley"!

#ifdef WITH_GC
#include <stream.h>
#include <Sysltypes.h>
#include <Sysltime.h>
#include <sys/resource.h>
#include "tags. h"
#include "instr. h"
mndude"hash table.h"
#include "string table. h"
#include "scan . h"
mndude"inst args.h"
#include "inst -table. h"
#include "memory. h"
mndude"basics.h"
#~dude"top level.h"
#include "gc. h"
#include "mark_ copy . h"

!"LOCAL DECLARATIONS"!

static DownStack FAST MARK STACK;
static CopyStack FAST_=-coPY-=-STACK;

/"if does not point directly to new space, either it dereferences to "!
/" a pointer to new space that belongs to some living environment, "!
/" that will be traced later on, or to some old environment, which "I
!" modification would then have been trailed. Therefore, there is no "!
/"need to dereference "!
void Env::tast_copy()
{
#ifdef WITH VIRTUAL BACK

Cell* y. e ~ Y1_ENV=OFFSET + already_treated;
Cell* yO= e + Y1_ENV_OFFSET +size;
for(; y <yO; Y++) {

}

Cell* ptr = y;
Cell val = *ptr;
while (get_ tag(val) == T AGREF && addr(val) >= EO && addr(val) != ptr) {

ptr = addr(val);
val= *ptr;

}
if (get_tag(val) ==• T AGCONST) continue;
If (to_new_space(addr(val)))
copy _from_base(ptr);

#else
Cell* y = e + Y1_ENV_OFFSET + already_treated;
Cell* yO= e + Y1_ENV_OFFSET +size;
for(; y <yO; Y++) {

If (get_tag("y) == T AGCONST) continue;
If (to_new_space(addr(*y)))

copy _from_base(y);
}

#end if
}

/"Needs to make sure that no unbound variable is left in registers ·;
void fast_copy_restore_top_env()
{

Cell* PreviousE = cellp(E[E_ENV_OFFSET]);
lnt arity = instrp(E[P _ENV_OFFSET])->arg2;
E = PreviousE;
for (lnt i = 0; i < arity; i++) {

fast_copy.c, page 2

X{ij • deref(E[Y1_ENV_OFFSET + ij);
If (X[ij- make_ptr(TAGREF, &E[Y1_ENV_OFFSET + i])) {

}

}
}

Cell new_var • make_ptr(TAGREF, FAST_COPY_STACK.top());
FAST_COPY_STACK.push(new_var);
X[ij. E[Y1_ENV_OFFSET + ij = new_var;

/* CHOICE POINTS *I

void setup_cps_fast_copy()
{
!* treat the case of the cps such that 8.h - HMIN now ·;
Cell* b = 82 .. 8;
while (cellp(b[H_CP _OFFSET]) =• HMIN) {

b[H_CP _OFFSET] • ceii(H2);
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET];

}

;• creates a topmost choice point •;
8 -= FIXED CP SIZE;
8[E_CP _OFFSET]= ceii(E);
8[H_CP _OFFSET]= ceii(H);
8[TR_CP _OFFSET]= ceii(TR);
8[P _CP _OFFSET]= 0; /*unused*/
8[SIZE_CP _OFFSET] • 0;

/*set 82 to be above E2, TR2 as well; save previous contents *I
SAVED_CP.tr • cellp(82[TR_CP _OFFSET]);
SAVED_CP.e • cellp(82[E_CP _OFFSET]);
SAVED_CP.h • cellp(82[H_CP _OFFSET]);
TR2 =- min(TR2, SAVED_CP.tr);
E2 = max(E2, SAVED_CP.e);
82[TR_CP _OFFSET]= ceii(TR2);
82[E_CP _OFFSET]= ceii(E2);
82[H_CP _OFFSET]= ceii(HMIN);

}

void restore_cps_fast_copy()
{
I* restore 82 to its initial contents •;
82[TR_CP _OFFSET] .. ceii(SAVED_CP.tr);
82[E_CP _OFFSET]= ceii(SAVED_CP.e);
82[H_CP _OFFSET]= ceii(SAVED_CP.h);

I* compute the new values of H, H2, TR, TR2, E2 *I
H = HMIN;
H2 = FAST_COPY_STACK.top();
TR = TR2 .. cellp(8[TR_CP _OFFSET]);
E2= E;

I* remove the dummy topmost choice point •;
8 += FIXED_CP _SIZE;

}

I* takes advantage of the fact that the tag bit is in the lower bits •;
void fast_copy_trail_1()
{

register Cell* trO = cellp(8[TR_CP _OFFSET]);
register Cell* tr = cellp(82[TR_CP _OFFSET]);
register Cell* copy_tr .. tr;
register Cell* h .. cellp(82[H_CP _OFFSET]);
register Cell* e = cellp(82[E_CP _OFFSET]);

fast_copy.c, page 3

for(; tr > trO; tr-) {

}

If (cellp(*tr) < h II (cellp(*tr) < e && cellp(*tr) >• EO))
•copy_tr-- •tr;

B[TR_CP _OFFSET] • cell(copy_tr);
}

void fast_copy_trail_2()
{

register Cell* trO = cellp(B[TR_CP _OFFSET]);
register Cell* tr • cellp(B2[TR_CP _OFFSET]);
for(; tr > trO; tr--) {

}
}

register Cell* ptr = addr(*tr);
If (ptr >= E2 II (ptr <EO && ptr >• HMIN))

continue;
If (pointer_to_new(*ptr))
copy _from_base(ptr);

void fast_copy_trail()
{
fast_ copy _trail_ 1 ();
fast_copy _trail_2();

}

I" control stacks ·;

I" we do the traversal of the environment stack and the choice point •;
I" stack together. that way we can avoid having to traverse the •;
/" records twice, and we do not have to use marking nor any extra ·;
I" space: just two extra structures. •;
I" will be quite easy to add virtual backtracking inside this routine •;
/" it works as follows: first visit all envs above the topmost choice •;
I" point. then visit all envs that are above the next living env. two •;
/" loops alternating, one visiting next living envs, one visiting the *I
I* next preserved envs. if a given env is shared, its living part is ·;
I" first entirely marked, then we wait until the last choice point *I
I" that preserved that env and mark the part that is preserved. *I

void fast_copy_control()
{
I" only living objects in that case •;
Env env(E);
for(;;) {

}
}

If (env.e <= E2) {
if (env.e == E2)

env.fast_copy();
break;

}
env.fast_copy():
env.next();

I" we save and later restore the topmost entry in the COPY_ STACK at •;
I" the time this routine is called. This is to simplify the algorithm •;
;• and avoid copying many times. Here, the main difficulty is the •;
I" correct treatment of refs. Since the order does not matter any ·;
I" more here, we can be even a bit more efficient. Each time we ·;
I" encounter a ref, we dereference it. If we get a constant, we just •;
I" copy the constant into the origin. If we get an unbound variable, •;
I" we rebind it backwards, and set the original pointer to unbound. •;
;• This may create pointers from new to base space for a while, so we •;

fast_copy.c, page 4

r should be careful. The idea is to always dereference tully, no •;
r matter what, and look at where the result is. Only stop when •;
r marked. Using the FAST_MARK_STACK helps a lot, though it cannot be •;
r deeper than one element. *I

void copy_from_base(Celr p)
{

FAST _MARK_ST ACK.init(B);
FAST _MARK_ST ACK.push(p);
for(;;) {

Cell* var;
If (FAST_COPY_STACK.nonempty())
var• FAST_COPY_STACK.pop();

else If (FAST_MARK_STACK.nonempty())
var = FAST _MARK_ST ACK.pop();

else
break;

switch (get_tag(*var)) {
case T AGCONST:

break;
case T AGREF:
{

Cell* ptr = addr(*var);
If (ptr < HMIN II ptr >• EO) {

If (*var •• *ptr) {
If (ptr > var)

*ptr • •var - make_ptr(T AGREF, var);
} else {

*var • *ptr;
FAST _MARK_STACK.push(var);

}
} else If (marked(ptr)) {
•var = make_ptr(TAGREF, reloc_addr(ptr));

} else If (*var ... *ptr) {
*ptr = •var = make_ptr(TAGREF, var);

} else {
*var .. *ptr;
FAST _MARK_ST ACK.push(var);

}
}
break;

case T AGLIST:
{

Cell* list • addr(*var);
If (list >• HMIN) {

}
}
break;

If (marked(list)) {
*var • make_ptr(TAGLIST, reloc_addr(list));

} else {
*var• make_ptr(TAGLIST, FAST_COPY_STACK.top());
for (lnt i - 0; i < 2; i++) {

}
}

mark(list + i);
Cell* dest = FAST_COPY_STACK.top();
FAST _COPY _STACK.push(list[ij);
set_reloc_addr(list + i, dest);

case T AGSTRUCT:
{

Cell* str = addr(*var);
if (str >= HMIN) {

fast_copy.c, page 5

}

}
}
break;

}

If (marked(str)) {
*var • make__ptr(TAGSTRUCT, reloc_addr(str));

} else {
*var • make__ptr(TAGSTRUCT, FAST_COPY_STACK.top());
lnt iO = get_int(str{1]) + 2;
for (lnt i ... 0; i < iO; i++) {

}
}

mark(str + i);
Cell* dest = FAST_COPY_STACK.top();
FAST_COPY_STACK.push(str{D);
set_reloc_addr(str + i, dest);

}

r Basic lnitializations "I
void tast_copy_gc_init()
{
#ifdef WITH VIRTUAL BACK

MARK= 2 * ((GC_COUNTER% 127) + 1); r values from 2 to 254 "I
#else

MARK = (GC_COUNTER % 255) + 1; r values from 1 to 255 "I
#end if

GC_COUNTER++;
FAST_COPY _STACK.init(H2);

}

r Collect some data "I
r some basic data: mark(scan,recovered), copy(scan,recovered), cputime *I
r the data are given in number of cells, milliseconds. "I

void fast_copy_stat~()
{

gc_scanned += H_entry_value- HMIN;
gc_copy_scanned += H_entry_value- HMIN;
gc_survivors += H2- H2_entry_value;
tr_scanned += TR2_entry_value- TR_entry_value;
tr_survivors += TR2_entry_value- TR;
If (DISPLAY _GC) {
cout << "gc (";
display_stat1("copy", H_entry_value- HMIN, H2- H2_entry_value);
display_stat1 ("tr", TR2_entry_value-TR_entry_value, TR2_entry_value-TR);

}
}

r top level *I
/"assumes that GC_DOES_COPY. Should also work if everything is above "I
r the topmost choice point, though slower than the special purpose "I
I" fast_copy garbage collector *I

void fast_copy()
{

init_stats();
store_regs_in_env();
setup_cps_fast_copy();
fast_ copy _gc_init();
init_marking_table();
fast_copy _trail();
fast_copy _control();
fast_ copy _restore_top_env();

fast_copy.c, page 6

}

restore_cps_fast_copy():
fast_copy _stats():
compute_stats():

#end if

mark_compact.c, page 1

r Copyright Herve' Touati, Aquarius Project, UC Berkeley •;

#ifdef WITH_GC
#include <Stream.h>
#include <Sysltypes.h>
#include <Sysltime.h>
#include <sys/resource.h>
#include "tags. h"
#include "instr . h"
#~dude"hash table.h"
#include "string table.h"
#include "scan . h"
~ndude"inst_args.h"
~ndude"inst table.h"
#include "memory . h"
#include "basics. h"
~ndude"top level.h"
#include "gc. h"
#include "mark_ copy . h"

r ENVS *I

void Env::mark_sweep()
{
#ifdef WITH VIRTUAL BACK

Cell* y = e ~ Y1_ENv:=oFFSET + already_treated;
Cell* yO= e + Y1_ENV_OFFSET +size;
for(; y <yO; Y++) {

}

Cell* ptr • y;
Cell val = *ptr;
while (get_tag(val) == T AGREF && addr(val) >= E2 && addr(val) != ptr) {

ptr = addr(val);
val • *ptr:

}
if (get_tag(val) •= TAGCONST) continue;
if (to_new_space(addr(val)))

mark_from_base_sweep(ptr);

#else
Cell* y"" e + Y1_ENV_OFFSET + already_treated;
Cell* yO= e + Y1_ENV_OFFSET +size;
for(; y <yO; Y++) {

if (get_tag(*y) == T AGCONST) continue;
if (to_new_space(addr(*y)))

mark_from_base_sweep(y);
}

#end if
}

r CHOICE POINTS *I

r creates a choice point at the top that is above everything else. *I
r It is easier to code gctrail that way: don't have to worry about *I
r boundary conditions any more. *I
void setup_cps_JJass1_sweep()
{
r creates a topmost choice point *I
B -= FIXED_CP _SIZE;
B(E_CP _OFFSET]= ceii(E);
B[H_CP _OFFSET]= ceii(H);
B(TR_CP _OFFSET] = ceii(TR);
B[P _CP _OFFSET]= 0; r unused *I
B[SIZE_CP _OFFSET] = 0;

mark_compact.c, page 2

r find 8MIDDLE and 82 */
Cell* b • 8;
while (cellp(b(H_CP _OFFSET]) > HMIN) {

b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET];
}
82· b;

r treat the case of the cps under 82 such that 8.h == HMIN now •;
while (cellp(b[H_CP _OFFSET]) - HMIN) {

b[H_CP _OFFSET]= ceii(H2);
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET];

}

r set 82 to be above TR2 as well; save previous contents *I
SAVED_CP.tr = cellp(82[TR_CP _OFFSET]);
SAVED_CP.e • cellp(82[E_CP _OFFSET]);
SAVED_CP.h • cellp(82(H_CP _OFFSET]);
TR2 = min(TR2, SAVED_CP.tr);
E2 = max(E2, SAVED_CP.e);
82[TR_CP _OFFSET] .. ceii(TR2);
82[E_CP _OFFSET] • ceii(E2);
82[H_CP _OFFSET] • ceii(H2);

r just to limit the modifications with the mark_copy case •;
HMIDDLE .. HMIN;

}

r just replace unmarked2 by unmarked *I
void Choice::virtual_backtrack_sweep()
{
#ifdef WITH_ VIRTUAL_8ACK

Cell* varO .. tr;
Cell* var = cellp(b[TR_CP _OFFSET]);
tr .. var;
for(; var > varO; var-) {

Cell* ptr = addr(*var);
If (ptr >= EO) {

Cell val = *ptr;
while (get_tag(val) •• TAGREF && addr(val) >= EO && addr(val) l= ptr) {

ptr = addr(val);
val- *ptr;

}
If (pointer_to_new(*ptr) && unmarked(addr(*ptr)))

*addr(*var) .. *var;
} else If (ptr >• HMIN) {

If (unmarked(ptr))

}
}

#end if
}

*ptr = *var:

void Choice::mark_sweep()
{
#ifdef WITH_ VIRTUAL_8ACK

virtual_backtrack_sweep();
Cell* x = b + X1_CP _OFFSET;
Cell* xo = x + b[SIZE_CP _OFFSET];
for(; x < xO; X++) {

Cell* ptr = x;
Cell val = *ptr:
while (get_ tag(val) == T AGREF && addr(val) >= E2 && addr(val) f· ptr) {

ptr = addr(val);
val= *ptr;

mark_compact.c, page 3

}

}
If (get_tag(val) =-= TAGCONST) continue;
If (to_new_space(addr(val)))

mark_from_base_sweep(ptr);

#else
Cell" x ,. b + X1 CP OFFSET;
Cell" xO. x + b[SIZE_CP _OFFSET];
for(; x < xO; X++) {

If (get_tag("x) =-• T AGCONST) continue;
If (to_new_space(addr(*x)))

mark_from_base_sweep(x);
}

#end if
}

r THE TRAIL STACK"!

void gctrail_pass12_sweep()
{

register Cell* trO .. cellp(B[TR_CP _OFFSET]);
register Cell" tr = cellp(B2[TR_CP _OFFSET]);
for(; tr > trO; tr--) {

}
}

reg lster Cell" ptr = addr(*tr);
If (ptr >= E2 II (ptr < EO && ptr >= HMIN))
continue;

If (pointer_to_new(*ptr))
mark_from_base_sweep(ptr);

void gctrail_pass1_sweep()
{

gctrail_pass11 ();
gctrail_pass 12_sweep();

}

void gctrail_pass2_sweep()
{
TraiiCP cp(B2, B);
Cell* trO = cp.tr;
Cell* tr • cp.tr;
Cell* copy_tr = cp.tr;
while (cp.nonempty()) {

}
}

tr • trO;
trO = cp.next_tr;
for(; tr > trO; -tr) {

Cell* ptr = addr(*tr);
switch (cp.pass2_action_sweep(ptr)) {
case TRAIL_SKIP:

break;
case TRAIL RELOC:

*copy.:=tr-- = relocate(TAGREF, ptr);
break;

case TRAIL_IND_RELOC:

}
}

*ptr = check_and_relocate(*ptr);
"copy_tr-- = *tr;
break.;

cp.update_tr(copy _tr);
cp.next();

mark_compact.c, page 4

r control stacks •;

r just replace marking by sweep marking •;

void gccontrol_pass1_sweep()
{
r first, take care of living cells •;
Env env(E):
for(;;) {

}

If (env.e <• E2) {
If (env.e •• E2)

env. mark_sweep():
break;

}
env. mark_sweep():
env.next():

r now, take care of preseNed cells •;
Choice cp(E, B):
for (;;) {

}
}

If (cp.last()) break;
cp.mark_sweep();
cp.mark_preserved_ envs_sweep():
cp.next():

r simple, sweep marking •;

I* suppose pis a global stack pointer; can't point to env stack *I
r should be recoded to use a table lookup instead of all those tests *I

static DownStack MARK_SWEEP _STACK;
void mark_from_base_sweep(Cell* p)
{

MARK_SWEEP _STACK.init(B);
MARK_SWEEP _STACK.push(p);
for(;;) {

Cell* var:
If (MARK_SWEEP _STACK.nonempty())
var = MARK_SWEEP _STACK.pop();

else
break;

switch (get_tag(*var)) {
case T AGCONST:

break;
case T AGREF:

{
Cell* ptr = addr(*var);
If (ptr >• HMIN && unmarked(ptr)) {

mark(ptr);
MARK_ SWEEP _ST ACK.push(ptr);

}
}
break:

case TAGLIST:
{

Cell* list = addr(*var):
If (list >• HMIN) {
for (tnt i = O: i < 2: i++) {

If (unmarked(list + i)) {

mark_compact.c, page 5

}
}

}
}
break;

}

mark(list + i);
MARK_SWEEP _STACK.push(list + i);

}

case TAGSTRUCT:
{

Cell! str = addr(*var);
If (str >• HMIN && unmarked(str)) {

tnt iO = get_int(str{1]) + 2;

}
}
break;

}

for (lnt i = 0; i < 2; i++)
mark(str + i);

for (i = 2; i < iO; i++) {
mark(str + i);
MARK_SWEEP _STACK.push(str + i);

}

void mark_compact_stats()
{

gc_scanned +• H_entry_value- HMIN;
gc_survivors + .. H2- H2_entry_value;
tr_scanned +• TR2_entry_value- TR_entry_value;
tr_survivors +• TR2_entry_value- TR;
If (DISPLAY_GC) {

cout << "gc (";
display_stat1("global", H_entry_value- HMIN, H2- H2_entry_value);
display_stat1("trail ",TR2_entry_value-TR_entry_value, TR2_entry_value-TR);

}
}

void init_marking_table_sweep()
{
#ifdef WITH VIRTUAL BACK

If (MARK ,;; 2) return;
#else

If (MARK != 1) return;
#end if

register lnt* p =(tnt*) MKMIN;
register tnt* pO. HMIN;
while (p < pO)

*p++ = 0;

I* basic initializations •;

I* need to initialize MARK2 in case this is used with mark_copy •;
void gc_init_sweep()
{
#ifdef WITH_ VIRTUAL_BACK

MARK= 2 * ((GC_COUNTER% 127) + 1); /*values from 2 to 254 "!
#else

MARK = (GC_COUNTER % 255) + 1; /*values from 1 to 255 "!
#end if

GC_COUNTER++;
}

mark_compact.c, page 6

/* top level •;
/*assumes that GC_DOES_COPY. Should also work if everything is above •;
/* the topmost choice point, though slower than the special purpose •;
/* tast_copy garbage collector •;

void mark_compact()
{

}

init_stats();
store_regs_in_env();
setup_cps_pass 1_sweep();
gc_init_sweep();
init_marking_table_sweep();
cp_to_cp_forward();
get rail _pass 1_sweep();
cp_to_cp_backward();
gccontrol_pass 1_sweep();
global_sweep();
gccontrol_pass2();
cp_to_cp_forward();
gctrail_pass2_sweep();
cp_to_cp_backward();
restore_top_env();
restore _cps();
mark_compact_stats();
compute_stats();

#end if

mark_copy.c, page 1

/*Copyright Herve' Touati, Aquarius Project, UC Berkeley *I

#ifdef WITH_GC
#include <Stream.h>
#include <Sys/types.h>
#include <Sys/time.h>
#include <sys/resource.h>
#include "tags. h"
#include "instr . h"
#include "hash table. h"
#include "string table. h"
#include "scan. h"
#include "inst args. h"
#include "inst-table.h"
#include "memory. h"
~nclude"basics.h"
~nclude"top level.h"
#include "gc. h"
#include "mark_copy. h"

r LOCAL DECLARATIONS */

r choice point that separates copying from marking *I
CeiiPtr BMIDDLE, HMIDDLE, 82;

r various stacks used during marking *I
static DownStack MARK_STACK;
static UpStack REF _STACK;
static Copy Stack COPY _STACK;

I* incremented at each GC. Just a counter *I
lnt GC_COUNTER;

r the mark used for marking. Equals to GC_COUNTER modulo 255 + 1 *I
unsigned char MARK;
#ifdef WITH VIRTUAL BACK
static unsig-ned char MARK2;

inline void mark2(Cell* p)
{ MKMIN[p- HMIN] = (marked(p))? MARK: MARK2;}

inline int marked2(Cell* p)
{return (marked(p) II MKMIN[p- HMIN] == MARK2);}

inline lnt unmarked2(Cell* p)
{ return (unmarked(p) && MKMIN[p- HMIN] != MARK2); }

#end if

I* ENVIRONMENTS and REGISTERS *I
r creates a new environment at the top of the stack, and saves the *I
r registers in it. Then put yet another one above it, with nothing *I
I* in it. Easier to restore than adding the registers to the current *I
r environment. *I
static lnstr dummy_instr;
void store_regs_in_env()
{

int arity = instr_args[ARG_PROC]->get_arity(P->arg1);
arity = (NUMBER_OF _REGISTERS< arity) ? NUMBER_ OF _REGISTERS : arity;
dummy_instr.arg2 "' arity;
for (lnt i = 0; i < arity; i++)

E[Y1_ENV_OFFSET + ij = X[ij;
Cell* NewE = E + arity + E_ TOP _OFFSET;
NewE[B_ENV _OFFSET] = 0; /*unused *I

mark_copy.c, page 2

NewE[E_ENV_OFFSET] • ceii(E);
NewE[P _ENV_OFFSET] • cell(&dummy_instr);
E = NewE;

}

r restore the top of the stack as before the call to store_regs_in_env •;
void restore_top_env()
{

Cell* PreviousE = cellp(E[E_ENV_OFFSET]);
lnt arity • instrp(E[P _ENV_OFFSET])->arg2;
E • PreviousE;
for (lnt i • 0; i < arity; i++)

X[ij = E[Y1_ENV_OFFSET + ij;

r it does not point directly to new space, either it dereterences to •;
r a pointer to new space that belongs to some living environment, *I
r that will be traced later on, or to some old environment, which *I
r modification would then have been trailed. Therefore, there is no *I
r need to dereference *I
void Env::mark()
{
#ifdef WITH VIRTUAL BACK

Cell* y = e ~ Y1_ENv=:oFFSET + already_treated;
Cell* yO= e + Y1_ENV_OFFSET +size;
for(; y <yO; Y++) {

}

Cell* ptr = y;
Cell val • *ptr;
while (get_tag(val) •• TAGREF && addr(val) >• E2 && addr(val) != ptr) {

ptr = addr(val);
val= *ptr;

}
If (get_tag(val) =• TAGCONSl) continue;
If (to_new_space(addr(val)))

mark_from_base(ptr);

#else
Cell* y = e + Y1_ENV _OFFSET+ already_treated;
Cell* yO= e + Y1_ENV_OFFSET +size:
for(; y <yO; Y++) {

If (get_tag(*y) =• T AGCONST) continue;
If (to_new_space(addr(*y)))

mark_from_base(y):
}

#end if
}

void Env::update()
{

Cell* y = e + Y1_ENV _OFFSET+ already_treated;
Cell* yO= e + Y1_ENV_OFFSET +size;
for(; y <yO; Y++)
*y = check_and_relocate(*y);

r CHOICE POINTS */

ChoiceRecord SAVED_CP;

r if less than a threshold, use mark_compact instead *I
const float COPY_THRESHOLD = 0.2;

lnt deterministic()
{

mark_copy.c, page 3

return (cellp(8[H_CP _OFFSET])<'"' HMIN);
}

lnt enough_to_copy()
{

Cell* H_THRESHOLD • &HMIN[(Int) ((float) (H-HMIN)*COPY_THRESHOLD)];
Cell* b = 8;

}

while (cellp(b[H_CP _OFFSET]) > H_ THRESHOLD)
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET];

return (cellp(b[H_CP _OFFSET])<= HMIN);

r creates a choice point at the top that is above everything else. •;
r It is easier to code gctrail that way: don't have to worry about •;
r boundary conditions any more. *I
void setup_cps_pass1 ()
{
r creates a topmost choice point *I
8 -= FIXED CP SIZE;
8[E_CP _OFFSET] • ceii(E);
8[H_CP _OFFSET]= ceii(H);
8[TR_CP _OFFSET] = ceii(TR);
8[P _CP _OFFSET] = 0; r unused *I
8[SIZE_CP _OFFSET] = 0;

r find 8MIDDLE and 82 *I
8MIDDLE = 8;
Cell* b. 8;
while (cellp(b[H_CP _OFFSET]) > HMIN) {

8MIDDLE = b;
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET];

}
82= b;

I* treat the case of the cps under 82 such that 8.h == HMIN now •;
while (cellp(b[H_CP _OFFSET]) == HMIN) {

b[H_CP _OFFSET]= ceii(H2);
b += FIXED_CP _SIZE+ b[SIZE_CP _OFFSET];

}

r set 82 to be above TR2 as well; save previous contents "'!
SAVED_CP.tr = cellp(82[TR_CP _OFFSET]);
SAVED_CP.e = cellp(82[E_CP _OFFSET]);
SAVED_CP.h "'cellp(82[H_CP _OFFSET]);
TR2'"' min(TR2, SAVED_CP.tr);
E2 = max(E2, SAVED_CP.e);
82[TR_CP _OFFSET]= ceii(TR2);
82[E_CP _OFFSET]= ceii(E2);
B2[H_CP _OFFSET]= ceii(HMIN);

r cache the H entry of 8MIDDLE in a global variable "'!
HMIDDLE = cellp(BMIDDLE[H_CP _OFFSET]);

}

void setup_cps_pass2()
{
r restore 82 to its initial contents *I
B2[TR_CP _OFFSET]= ceii(SAVED_CP.tr);
B2[E_CP _OFFSET]= ceii(SAVED_CP.e);
B2[H_CP _OFFSET]= ceii(SAVED_CP.h);

r take 8MIDDLE as 82: copied stuff appears as old form now on *I
82 • BMIDDLE;
H2 = COPY_STACK.top();

mark_copy.c, page 4

B2[H_CP _OFFSET] • ceii(H2);

i set 82 to be above TR2 as well; save previous contents •;
SAVED_CP.tr • cellp(B2[TR_CP _OFFSET]);
SAVED_CP.e • cellp(B2[E_CP _OFFSET]);
TR2 • min(TR2, SAVED_CP.tr);
E2 • max(E2, SAVED_CP.e);
B2[TR_CP _OFFSET] • ceii(TR2);
B2[E_CP _OFFSET]= ceii(E2);

}

void restore_cps()
{
i restore 82 to its initial contents •;
B2[TR_CP _OFFSET]= ceii(SAVED_CP.tr);
B2[E_CP _OFFSET]= ceii(SAVED_CP.e);

i relocate the H entries to their correct, final position •;
Cell* b • B;
while (b < 82) {

}

b[H_CP _OFFSET] .. cell(reloc_addr(cellp(b[H_CP _OFFSET])));
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET];

i compute the new values of H, H2, TR, TR2, E2 •;
H =HMIN;
H2"" cellp(B[H_CP _OFFSET]);
TR • TR2 ... cellp(B[TR_CP _OFFSET]);
E2= E;

i remove the dummy topmost choice point *I
B += FIXED_CP _SIZE;

}

i hard to get all the benefit from this. The main problem is that we •;
i cannot mark env variables as easily. Since this is applied only •;
i after gctrail and gcenv, if an env variable is found to be •;
i pointing to a location that is unmarked2 in new space, we know we •;
i can reset it. We could extend that by dereferencing the var. If •;
i the first entry to new space is not marked, we can reset the var ·;
void Choice::virtual_backtrack()
{
#ifdef WITH VIRTUAL BACK

Cell* varO ; tr; -
Cell• var • cellp(b[TR_CP _OFFSET]);
tr = var;
for(; var > varO; var-) {

Cell* ptr ... addr(*var);
If (ptr >• EO) {

Cell val • *ptr;
while (get_tag(val) == T AGREF && addr(val) >= EO && addr(val) != ptr) {

ptr = addr(val);
val= *ptr;

}
If (pointer_to_new(*ptr) && unmarked2(addr(*ptr)))

*addr(*var) = *var;
} else If (ptr >• HMIN) {

If (unmarked2(ptr))

}
}

#end if
}

*ptr = *var;

mark_copy.c, page 5

!" This stack exactly simulates what would happen on backtracking *I
!"supposing we encounter an infinite sequence of fails. This is *I
!"really virtual backtracking! The problem is really the difference *I
!" in sizes of the environments, depending on the point of view! That *I
!"is the only reason why we need a stack (or marking bits). Stacks *I
!" are preferable in general because they are faster and cleaner. *I
!" the cost is on choice points only *I

Choice::Choice(Cell* E, Cell* B)
{

}

b= 8;
tr = cellp(B[TR_CP _OFFSET]);
preserved.init(cellp(b[E_CP _OFFSET]));
already _done .in it(E);

void Choice::mark()
{
#ifdef WITH_ VIRTUAL_BACK

virtual_ backtrack();
Cell* x = b + X1 CP OFFSET;
Cell* xO = x + b[SIZE_CP _OFFSET];
for(; x < xO; X++) {

}

Cell* ptr = x;
Cell val = *ptr;
while (get_tag(val) == TAGREF && addr(val) >= E2 && addr(val) != ptr) {

ptr = addr(val);
val= *ptr;

}
If (get_tag(val) •• TAGCONST) continue;
If (to_new_space(addr(val)))

mark_from_base (ptr);

#else
Cell* x = b + X1 CP OFFSET;
Cell* xO = x + b(SIZE_CP _OFFSET];
for(; x < xO; X++) {

If (get_tag(*x) == T AGCONST) continue;
If (to_new_space(addr(*x)))

mark_from_base(x);
}

#end if
}

#define use(ACTION,PROC_NAME)\
void Choice::PROC_NAME()\
{\

}

while (already_done.e > preserved.e)\
already _done.next() ;\

Env e_limit = already_done;\
already_done =preserved;\
while (preserved.e >= E2) {\

If (preserved.e > e_limit.e) {\
preserved.ACTION() ;\
preserved. next();\

} else If (preserved.e == e_limit.e) {\
preserved. treated(e_limit.size) ;\
preserved.ACTION() ;\
break;\

} else{\
top_level_error("Inconsistent Path thru Env Stack");\

}\
}\

mark_copy.c, page 6

use(mark,markJ)reserved_envs)
use(mark_sweep,markJ)reserved_envs_sweep)
use(update,updateJ)reserved_envs)
#undef use

void Choice::update()
{

Cell* x • b + X1 CP OFFSET;
Cell* xO. x + b[SIZE_CP _OFFSET];
for(; x < xO; X++)

*x = check_and_relocate(*x);

!* rotates the size fields of the choice points [82,8] down, putting *I
!*the one for 82 in B[SIZE_CP_OFFSET] *I
void cp_to_cp_forward()
{

lnt b2_size • 82[SIZE_CP _OFFSET];
Cell* b .. B;
lnt size • b[SIZE_CP _OFFSET];
while (b < 82) {

}

b +• FIXED_CP _SIZE+ size;
lnt temp- size;
size= b[SIZE_CP _OFFSET];
b[SIZE_CP _OFFSET]= temp;

B[SIZE_CP _OFFSET] = b2_size;
}

I* do the opposite. composing those two should be a noop *I
void cp_to_cp_backward()
{

lnt b_size = B[SIZE_CP _OFFSET];
Cell* b- 82;
lnt size= b[SIZE_CP _OFFSET];
while (b > B) {

}

b -= FIXED_CP _SIZE + size;
lnt temp = size;
size .. b[SIZE_CP _OFFSET];
b[SIZE_CP _OFFSET] =temp;

82[SIZE_CP _OFFSET] = b_size;
}

I* THE TRAIL STACK*/

/* OLD VERSION
void gctrai/_passt()
{

TraiiCP cp(B2, B);
register Celr trO ""' cp.tr;
register Cell* tr,.. cp.tr;
register Cell* copy_tr = cp.tr;
while (cp.nonempty()) {
tr = trO;
trO • cp.next_tr;
for(; tr > trO; tr--) {

register Cell* ptr = addr('*tr);
switch (cp.passt_action(ptr)) {
case TRAIL_MARK:

mark_from_base(ptr);
*copy_tr-- = *tr;
break;

case TRAIL_KEEP:

mark_copy.c, page 7

·copy_tr-- •tr;
break;

case TRAIL_SKIP:
break;

}
}
cp.update_tr(copy_tr);
cp.next();

}
}
"I

;- takes advantage of the fact that the tag bit is in the lower bits "I
void gctrail_pass11 ()
{

TraiiCP cp(B2, B);
register Cell* trO = cp.tr;
register Cell* tr = cp.tr;
register Cell* copy_tr = cp.tr;
while (cp.nonempty()) {
tr = trO;
trO = cp.next_tr;
Cell* e = cp.e;
Cell* h = cp.h;
for(; tr > trO; tr-) {

If (cellp(*tr) < h II (cellp(*tr) < e && cellp("tr) >= EO))
"copy_tr-- • *tr;

}
cp.update_tr(copy_tr);
cp.next();

}
}

void gctrail_pass12()
{

register Cell* trO = cellp(B[TR_CP _OFFSET]);
register Cell* tr = cellp(B2[TR_CP _OFFSET]);
for(; tr > trO; tr--) {

}
}

reg lster Cell* ptr = addr("tr);
If (ptr >= E2 II (ptr < EO && ptr >= HMIN))
continue;

If (pointer_to_new(*ptr))
mark_from_base(ptr);

void gctrail_pass1 ()
{
gctrail_pass 11 ();
gctrail_pass12();

}

r 82 has been set to BMIDDLE meanwhile; only look at the top part of •;
I* the trail above BMIDDLE now. •;
r Also, there is the special case of trail entries pointing to the "!
r part that has been copied. Some of those need relocation •;
void gctrail_pass2()
{
TraiiCP cp(B2, B);
Cell* trO = cp.tr;
Cell* tr = cp.tr;
Cell* copy_tr = cp.tr;
while (cp.nonempty()) {

tr = trO;

mark_copy.c, page 8

}
}

trO • cp.next_tr;
for(; tr > trO: -tr) {

Cell* ptr • addr(*tr):
switch (cp.pass2_action(ptr)) {
case TRAIL_SKIP:

break;
case TRAIL RELOC:

*copy:tr- • relocate(TAGREF, ptr);
break;

case TRAIL COPY RELOC:
*copy:tr- • reiocate(TAGREF, ptr);
ptr • reloc_addr(ptr);
*ptr • check_and_relocate(*ptr):
break;

case TRAIL IND RELOC:
*ptr == check_and_relocate(*ptr):
*copy_tr-- • *tr:
break;

}
}
cp.update_tr(copy_tr):
cp.next();

r control stacks ·;

r we do the traversal of the environment stack and the choice point •;
r stack together. that way we can avoid having to traverse the •;
r records twice, and we do not have to use marking nor any extra ·;
r space: just two extra structures. •;
r will be quite easy to add virtual backtracking inside this routine •;
r it works as follows: first visit all envs above the topmost choice *I
r point. then visit all envs that are above the next living env. two *I
r loops alternating, one visiting next living envs, one visiting the *I
r next preserved envs. if a given env is shared, its living part is *I
I* first entirely marked, then we wait until the last choice point *I
r that preserved that env and mark the part that is preserved. ·;
r the update is simple macro substitution from the mark *I

#define use(ACTION,PRESERVED_ACTION,PROC_NAME)\
void PROC_NAME()\
{\
r first, take care of living cells *I\
Env env(E);\
for(;;) {\

if (env .e <• E2) {\
If (env.e- E2)\

env.ACTION();\
break;\

}\
env .ACTION();\
env .next();\

}\
r now, take care of preserved cells • /1.
Choice cp(E, B);\
for (;;) {\

If (cp.last()) break:\
cp.ACTION();\
cp.PRESERVED _ACTION();\
cp.next();\

}\
}
use(mark,mark_preserved_envs,gccontrol_pass1)

mark_copy.c, page 9

use(update ,update_preserved_envs,gccontrol_pass2)
#undef use

r new space itself: compaction phase ·;

r not too hard. just go thru new area and the marking area in •;
!"parallel. each time i encounter something marked, copy it down •;
r in copy space. leave behind in each location the relocation •;
r address (untagged). ·;
r needs a second scan to compute the final addresses. proportional •;
r to m+n in total"!
r Also, for being able to restore global stack pointers uniformly, ·;
r we add one entry at the top to relocate the topmost choice point •;
r entry correctly •;
r This is also the place to gather statistics about the efficiency "I
r of the garbage collector ·;
static Cell* H2_copy_value;
static Cell* H_copy_value;
void global_sweep()
{

register Cell* p .. HMIDDLE; r from lowest cp segment"!
register Cell" pO = H;
register unsigned char• m = &MKMIN[HMIOOLE- HMIN];
register Cell" h = H2;
H_copy_value"" HMIDDLE;

r sweep pass. Should always write relocation addresses "!
for(; p < pO; p++, m++) {

}

If (*m == MARK) {
"h = *p;
•p '"'cell(h);
h++;

} else {
•p = cell(h);

}

!" relocation info for the topmost choice point •;
*p = cell(h);

r relocate pointers to new space "!
p = H2_copy_value .. H2;
H2 = pO = h;
for(; p < pO; P++) {

}
}

If (pointer_to_new(*p))
•p = relocate("p);

r the REF stack: delayed copying of variables in copy space "!
r objects in the stack should be pointers to locations containing ref ·;
r pointers to cp_down "! .
r if virtual backtracking, we cannot guarantee visiting only once "!
void gcref_pass1 ()
{

while (REF _STACK.nonempty()) {
Cell* var =REF _STACK.pop();
Cell* ptr = addr("var);

#ifdef WITH VIRTUAL BACK
If(! to_new_space(ptr)) continue;

#end if
If (unmarked(ptr)) {
mark(ptr);
Cell val = *ptr;

mark_copy.c, page 10

}

set_reloc_addr(ptr, COPY _ST ACK.top());
COPY _STACK.push(val);
If (get_tag(val) •• TAGREF && addr(val) >• HMIN)

REF _STACK.push(reloc_addr(ptr));

*var- make_ptr(TAGREF, reloc_addr(ptr));
}

}

!" marking ·;

!" we pass a pointer to the cell containing the pointer to the object *I
!" to mark. not necessary for marking, but necessary for copying. •;
!" we use the space at the top of the choice point stack (between •;
!" choice point stack and the environment stack) as the marking stack. *I
!" we need to initialize the marking area at each gc. here, since we •;
!" use one byte per mark, we can rotate the mark, and reduce the cost •;
!"of initialization by 255. •;

!"when copying, don't mark ref pointers nor what they point to. we •;
!" will do it later. also trail pointers from copy area to new area *I
!"to speed up relocation. •;

;• suppose pis a global stack pointer; can't point to env stack •;
!" should be recoded to use a table lookup instead of all those tests *I

!" OLD VERSION
inline int copy_or_mark(Ce/1* p)
{

if (p < HMIN)
retum SHOULD NEITHER;

else if (p < HMIDDLE)
retum (marked(p)) ? SHOULD_RELOC: SHOULD_ COPY;

else
retum (marked(p)) ? SHOULD_CHECK_MARK: SHOULD_MARK;

lnt copy_or_mark_table[2][2] = {
{SHOULD_MARK, SHOULD_CHECK_MARK},
{SHOULD_COPY, SHOULD_RELOC}

} ;

inline lnt copy_or_mark(Cell* p)
{

If (p > .. HMIN)
return copy_or_mark_table[(p < HMIDDLE)][marked(p)];

else
return SHOULD_NEITHER;

!" In the copy part, a list or a structure is marked iff any of its •;
!" elements is. •;
void mark_from_base(Cell* p)
{

MARK_STACK.init(B);
MARK_ST ACK.push(p);
for(;;) {

Cell* var;
If (COPY _STACK.nonempty())
var = COPY _ST ACK.pop();

else If (MARK_STACK.nonempty())
var = MARK_STACK.pop();

else

mark_copy.c, page 11

break;

switch (get_tag(*var)) {
case T AGCONST:

break;
case T AGREF:

{
Cell* pt(• addr(*var);
switch (copy_or_mark(ptr)) {
case SHOULD_MARK:

mark(ptr);
MARK_ST ACK.push(ptr);
break;

case SHOULD_RELOC: i ptr to marked copied location *I
*var • mat<e_ptr(TAGREF, reloc_addr(ptr));
break;

case SHOULD COPY:
REF _STACK.push(var);
for(;; var = ptr, ptr = addr(*ptr)) {
i here, ptr is always a pointer to low cp segment *I

#ifdef WITH VIRTUAL BACK

#else

#end if

lf (get_tag{*ptr) != T AGREF) {
MARK_ST ACK.push(ptr);
mark2(ptr);
break;

}
If (ptr < HMIN II *var =• *ptr II marked2(ptr))

break;
mark2 (ptr) ;

If (get_tag(*ptr) !· TAGREF) {
MARK_ST ACK.push(ptr);
break;

}
If (ptr < HMIN II marked(ptr) II *var =<= *ptr)

break;

}
break;

case SHOULD CHECK MARK:
case SHOULD,=NEITHER:

break;
}

}
break;

case T AGLIST:
{

Cell* list = addr(*var);
switch (copy_or_mark(list)) {
case SHOULD_CHECK_MARKmarked(car) && unmarked(cdr) *I

If (unmarked(list + 1)) {
mark(list+ 1);
MARK_STACK.push(list + 1);

}
break;

case SHOULD_MARK:
for (lnt i = 0; i < 2; i++) {

mark(list + i);
MARK_STACK.push(list + i);

}
break;

case SHOULD_COPY:
*var = make_ptr(TAGLIST, COPY_STACK.top());
for (i = O; i < 2; i++) {

mark_copy.c, page 12

}
}

mark(list + i);
Cell* dest • COPY _STACK.top();
COPY _ST ACK.push(list[i]);
set_reloc_addr(list + i, dest);

}
break;

case SHOULD_RELOC:
*var .. make_otr(TAGLIST, reloc_addr(list));
break;

case SHOULD_NEITHER:
break;

}
}
break;

case T AGSTRUCT:
{

Cell* str - addr(*var);
switch (copy_or_mark(str)) {
case SHOULD_MARK:

lnt iO ,.. get_int(str[1]) + 2;
for (lnt i • 0; i < 2; i++)

mark(str + i);
for (i = 2; i < iO; i++) {

mark(str + i);
MARK_STACK.push(str + i);

}
break;

case SHOULD COPY:
*var • make_Pir(TAGSTRUCT, COPY_STACK.top());
iO - get_int(str[1]) + 2;
for (i • O; i < iO; i++) {

mark(str + i);
Cell* dest = COPY_STACK.top();
COPY _STACK.push(str[ij);
set_reloc_addr(str + i, dest);

}
break;

case SHOULD RELOC:
*var = make_Ptr(TAGSTRUCT, reloc_addr(str));
break;

case SHOULD CHECK MARK:
case SHOULD=NEITHER:

break;
}

}
break;

}

l" should allocate a fixed size region, just under new area. Needs "I
!" only be initialized once with Os. For the rest, We can just flip "I
r and use a global variable, say MARK. MARK is initialized to the "!
r current gc number modulo 255. When it overflows, the area is "I
r cleared again. During marking, only MARK is written in the byte "!
r corresponding to the word to be written. To be marked just means "!
r that this mark is being written. Only called when MARK is null "I

void init_marking_table()
{
#ifdef WITH VIRTUAL BACK

If (MARK !; 2) return;
#else

If (MARK != 1) return;

mark_copy.c, page 13

#end if
register lnt* p • (lnt*) MKMIN;
register lnt* pO • HMIN;
while (p < pO)
*p++. 0;

I" basic initializations *I

void gc_init()
{
#ifdef WITH VIRTUAL BACK

MARK= 2-; ((GC_CO-UNTER% 127) + 1); /"values from 2 to 254 */
MARK2 = MARK + 1; /" values from 3 to 255 *I

#else
MARK = (GC_COUNTER % 255) + 1; /"values from 1 to 255 *I

#end if

}

GC_ COUNTER++;
REF _ST ACK.init(E);
COPY _STACK.init(H2);

I" some basic data: mark(scan,recovered), copy(scan,recovered), cputime *I
/"the data are given in number of cells. milliseconds. *I
struct rusage gc_rusage;
Cell* H2_entry_value;
Cell* H_entry_value;
Cell* TR_entry_value;
Cell* TR2_entry_value;
void init_stats()
{

}

getrusage(RUSAGE_SELF, &gc_rusage);
H2_entry_value = H2;
H_entry_value = H;
TR_entry_value = TR;
TR2_entry_value = TR2;

void display_stat1 (char* legend, lnt before, lnt after)
{

float percent= (before) ? ((float) after/before) * 100 : 0;
printf("%s (%d, %d, %2 .lf), ",legend, before, after, percent);

}

void display_stat2(char* legend, lnt tb, lnt cb, lnt ta, lnt ca)
{

float percentb = (tb) ? ((float) cb/tb) * 100 : 0;
float percenta - (ta) ? ((float) ca/ta) * 1 00 : 0;
printf("%s (%2 .lf, %2 .lf), ",legend, percentb, percenta);

}

lnt gc_scanned;
lntgc_copy_scanned;
int gc_survivors;
lnt tr_scanned;
lnt tr_survivors;
float gc_time;

void compute_stats()
{
struct timeval from = gc_rusage.ru_utime;
getrusage(R USAGE_S ELF, &gc_rusage);
struct timeval to= gc_rusage.ru_utime;
float mstime = (float) to.tv_usec I 1000000 + to.tv_sec;

mark_copy.c, page 14

mstime --(float) from.tv_usec I 1000000 + from.tv_sec;
gc_time +• mstime;
If (DISPLAY_GC)
printf("time (% .3£)). \n", mstime);

If (trace_heap_flag)
heap_usage.gc_enter(H_entry _value, H2_entry _value);

void mark_copy_stats()
{

}

gc_scanned +• H_entry_value- HMIN;
gc_copy_scanned +• H_copy_value- HMIN;
gc_survivors +• H2- H2_entry_value;
tr_scanned += TR2_entry_value- TR_entry_value;
tr_survivors +• TR2_entry_value- TR;
If (DISPLAY_GC) {
cout << "gc (";
display_stat1("global", H_entry_value- HMIN, H2- H2_entry_value);
display_stat2(" copy",

H_entry_value- HMIN, H_copy_value- HMIN,
H2- H2_entry_value, H2_copy_value- H2_entry_value);

display_stat1 ("tr", TR2_entry_vatue-TR_entry_value, TR2_entry_value-TR);
}

/* top level •;
/*assumes that GC_DOES_COPY. Should also work if everything is above •;
I* the topmost choice point, though slower than the special purpose •;
/* fast_copy garbage collector •;

lnt DISPLAY_GC;

void mark_copy()
{

init_stats();
store_regs_in_env();
setup_cps_pass1 ();
gc_init();
init_marking_table();
cp_to_cp_forward();
gctrail_pass1 ();
cp_to_cp_backward();
gccontrol_pass1 ();
gcref_pass 1 ();
setup_cps_pass2();
global_sweep():
gccontrol_pass2():
cp_to_cp_forward();
gctrail_pass2();
cp_to_cp_backward();
restore_top_env();
restore_cps();
mark_copy_stats():
compute_stats():

}

int WHICH GC = MARK COPY;
int CHEc(:_GC_LIMIT; -
tnt GC_COUNT_LIMIT;

;• we optimize the mark_ copy case. Clearly, ff there is nothing to •;
I* copy, we should rather use mark_ compact. It is faster.! Around 7% •;
I* faster in the case of gccomp. •;
void garbage_collector()

mark_copy.c, page 15

{
If (CHECK_GC_LIMIT && GC_COUNTER >= GC_COUNT_LIMIT) {
cerr<< "GC Limit passed\n";

}
switch (WHICH_GC) {
case MARK_COPY:

mark_ copy();
break;

case MARK_ COPY _FAST_COPY:
If (deterministic())
fast_ copy();

else
mark_copy();

break;
case MARK_ THRESHOLD:

If (enough_to_copy())
mark_copy();

else
mark_compact();

break;
case MARK_COMPACT:

mark_compact();
break;

case MARK_COMPACT_FAST_COPY:
If (deterministic())
fast_copy();

else
mark_ compact();

break;
default:

}

top_level_error(11 Select GC algorithm first\n 11
);

break;

if (TR- H2 <= HMAXHARD- HMIN) {
top_level_error(11 Global Stack Overflow\n 11

);

}
}

void find_pointer(Cell val)
{

Cell* p;
Cell* pO;

#define use(FROM,TO,NAME)\
for (p = FROM, pO =TO; p < pO; P++) {\

if (*p ... val)\
cerr <<NAME<< 11

[
11 << (p- FROM)<< 11

) \n" ;\
}

use(HO,H2, 11 HO 11
)

use(HMIN,HMAXSOFT, 11 HMIN 11
)

use(EO,E, "EO 11
)

use(B,BO, "B ")
use(TR,TRO, 11 TR ")
#undefuse
}

#end if

